用户名: 密码: 验证码:
不同水力调度模式的两座调水型水库轮虫群落结构的比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative analysis of rotifer community structures in two pumped-storage reservoirs with different retention times
  • 作者:黄珂 ; 李慧明 ; 徐少林 ; 林秋奇 ; 韩博平
  • 英文作者:HUANG Ke;LI Huiming;XU Shaolin;LIN Qiuqi;HAN Boping;Institute of Hydrobiology,Jinan University;
  • 关键词:调水水库 ; 轮虫 ; 多样性 ; 群落结构 ; 相异系数
  • 英文关键词:Pumped-storage reservoir;;rotifer;;diversity;;community structure;;dissimilarity
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:暨南大学水生生物研究中心;
  • 出版日期:2019-05-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(41573062);; 广东省科技计划项目(2016A030313098)联合资助
  • 语种:中文;
  • 页:FLKX201903023
  • 页数:9
  • CN:03
  • ISSN:32-1331/P
  • 分类号:247-255
摘要
为了解水力调度对轮虫群落结构的影响,于2016年8月-2017年7月对调水水源相同而水力调度模式不同的两座水库(直流型水库和中等水力滞留时间水库)的轮虫种类、生物量及环境因子进行逐月观测.两座水库中共鉴定出轮虫37种,常见属为臂尾轮属(Brachionus)、异尾轮属(Trichcerca)、龟甲轮属(Keratella)、三肢轮属(Filinia)和多肢轮属(Polyarthra),它们的种类数分别占直流型水库和中等水力滞留时间水库所检出轮虫总种类数的58%和64%.两座水库轮虫种类虽基本一致,但轮虫优势种(相对生物量大于10%)有较大差异.直流型水库轮虫优势种以角突臂尾轮虫(Brachionus angularis)、镰状臂尾轮虫(B. falcatus)、裂足臂尾轮虫(B. diversicornis)、剪形臂尾轮虫(B. forficula)、截头皱甲轮虫(Ploesoma truncatum)、尖尾疣毛轮虫(Synchaetidae stylata)和真翅多肢轮虫(Polyarthra euryptera)为主;中等水力滞留时间水库主要以卜氏晶囊轮虫(Asplanchna brightwelli)、裂足臂尾轮虫(B. diversicornis)和镰状臂尾轮虫为轮虫优势种.两座水库Bray-Curtis相异系数为0.42~0.77,表明轮虫群落结构差异较大.冗余分析表明,叶绿素a浓度和温度是影响两座水库轮虫群落结构的重要因素.两座水库轮虫群落结构的Bray-Curtis相异系数与基于叶绿素a浓度和水温的环境欧氏距离呈显著正相关(Ra2dj=0.426,P<0.05).结果表明,虽然具有相同的调水水源,但由于两座水库的水力调度不同,叶绿素a浓度和水温有显著差异,轮虫群落结构趋于相异.
        In order to determine the influence of hydraulic regulation and environmental variables on rotifer community structure in pumped-storage reservoirs sharing the same water input but different hydraulic conditions,a through-flowing reservoir and an intermediate retention time reservoir were intensively sampled from August 2016 to July 2017. A total of 37 species of rotifers were identified. Common species in both reservoirs are from the genus Brachionus,Trichocerca,Keratella,Filinia and Polyarthra accounting for 58% and 64% of the total rotifer species in the through-flowing reservoir and the intermediate retention time reservoir,respectively. Although the species composition of the two reservoirs are quite similar,the dominant species were different. B. angularis,B. falcatus,B. forficula,B. diversicornis,P. euryptera,Synchaetidae stylata and Ploesoma truncatum dominated in the throughflowing reservoir; while Asplanchna brightwelli,B. diversicornis and B. falcatus dominated in the intermediate retention time reservoir. The Bray-Curtis dissimilarity of rotifer community structure for the two reservoirs is from 0.42 to 0.77. Redundancy analysis showed that chlorophyll-a and water temperature were the most important environmental variables explaining the variation of rotifer communities in the two reservoirs. The Bray-Curtis dissimilarity was significantly positively correlated with the environmental Euclidean distance based on chlorophyll-a concentration and water temperature( Ra2 dj= 0.426,P<0.05). The results indicated that although they have the same water input,chlorophyll-a concentration and water temperature are significantly different due to the distinct hydraulic conditions of the two reservoirs resulting to differences in their rotifer community structure.
引文
[1] Strakraba M,Tundisi JG. Reservoir water quality management. International Lake Environment Committee,United Nations Environment Programme,1999.
    [2] Lin ZW,Gu JG,Han BP. Spatial distribution of sediments and contents of inorganic phosphorus in a pumped storage reservoir. Journal of Agro-Environment Science,2006,25(3):776-781.[林彰文,顾继光,韩博平.一个抽水水库的沉积物及其无机磷含量的分布特点.农业环境科学学报,2006,25(3):776-781.]
    [3] Xu JR,Qiao L,Han BP et al. Response of cladoceran assemblage to inter-basin water transfer in cascading pump reservoir systems. Chin J Appl Environ Biol,2016,22(2):313-319.[徐健荣,乔磊,韩博平等.级联调水水库系统枝角类群落结构对调水的响应.应用与环境生物学报,2016,22(2):313-319.]
    [4] Branco CWC,Senna PAC. Relations among heterotrophic bacteria,chlorophyll-a,total phytoplankton,total zooplankton and physical and chemical features in the Paranoa reservoir,Brasilia,Brazil. Hydrobiologia,1996,337(1/2/3):171-181.
    [5] Duggan IC,Green JD,Shiel RJ. Distribution of rotifers in North Island,New Zealand,and their potential use as bioindicators of lake trophic state. Hydrobiologia,2001,446/447(1):155-164.
    [6] Branco CWC,Rocha MIA,Pinto GFS et al. Limnological features of Funil Reservoir(R.J. Brazil)and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes&Reservoirs Research&Management,2002,7(2):87-92.
    [7] Souza LCE,Branco CWC,Domingos P et al. Zooplankton of an urban coastal lagoon:composition and association with environmental factors and summer fish kill. Zoologia,2011,28(3):357-364.
    [8] Ejsmont-Karabin J. The usefulness of zooplankton as lake ecosystem indicators:Rotifer trophic state index. Polish Journal of Ecology,2012,60(2):339-350.
    [9] Lin QQ. Species diversity and spatial and temporal variations of pelagic metazooplankton in Liuxihe Reservoir. Guangzhou:Jinan University,2007.[林秋奇.流溪河水库后生浮游动物多样性与群落结构的时空异质性[学位论文].广州:暨南大学,2007.]
    [10] Iglesias C,Mazzeo N,Meerhoff M et al. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes:evidence from lakes,fish exclosures and surface sediments. Hydrobiologia,2011,667(1):133-147.
    [11] Beisner BE,Mccauley E,Wrona FJ. The influence of temperature and food chain length on plankton predato. Canadian Journal of Fisheries&Aquatic Sciences,1997,54:586-595.
    [12] Sarma SSS,Nandini S,Gulati RD. Life history strategies of cladocerans:comparisons of tropical and temperate taxa.Hydrobiologia,2005,542(1):315-333.
    [13] Lin SJ,He LJ,Huang PS et al. Comparison and improvement on the extraction method for chlorophyll-a in phytoplankton.Ecologic Science,2005,24(1):9-11.[林少君,贺立静,黄沛生等.浮游植物中叶绿素a提取方法的比较与改进.生态科学,2005,24(1):9-11.]
    [14] Koste W ed. Rotatoria. Berlin:Gebrder Borntraege,1978.
    [15] Zhang ZX,Huang XF eds. Freshwater plankton research method. Beijing:Science Press,1991.[章宗涉,黄祥飞.淡水浮游生物研究方法.北京:科学出版社,1991.]
    [16] Hu HJ,Wei YX eds. The freshwater algae of china-systematics,taxonomy and ecology. Beijing:Science Press,2006.[胡鸿钧,魏印心.中国淡水藻类———系统、分类及生态.北京:科学出版社,2006.]
    [17] Hillebrand H,Dürselen CD,Kirschtel D. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology,1999,35(2):403-424.
    [18] Kasprzak P,Padisák J,Koschel R et al. Chlorophyll-a,concentration across a trophic gradient of lakes:An estimator of phytoplankton biomass. Limnologica,2008,38(3):327-338.
    [19] Segers H. Zoogeography of the Southeast Asian Rotifera. Hydrobiologia,2001,446/447(1):233-246.
    [20] Lin QQ,Zhao SY,Han BP. Rotifer distribution in tropical reservoirs,Guangdong Province,China. Acta Ecologica Sinica,2005,25(5):1123-1131.[林秋奇,赵帅营,韩博平.广东省水库轮虫分布特征.生态学报,2005,25(5):1123-1131.]
    [21] Chen LG,Lin QQ,Han BP. Dynamics and community structure of Rotifers in Xikeng Reservoir,south China. Journal of Hydroecology,2013,34(6):27-33.[陈丽光,林秋奇,韩博平.茜坑水库轮虫群落结构组成和动态.水生态学杂志,2013,34(6):27-33.]
    [22] Moore MV,Folt CL,Stemberger RS. Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Archiv fur Hydrobiologie,1996,135(3):289-319.
    [23] Baio C,Boavida MJ. Environmental factors determining the structure of rotifer communities in a river-shed reservoir. Aquatic Ecology,2000,34(4):369-377.
    [24] Stelzer CP. Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species?Hydrobiologia,1998,387/388:349-353.
    [25] Arora J,Mehra NK. Seasonal dynamics of rotifers in relation to physical and chemical conditions of the river Yamuna(Delhi),India. Hydrobiologia,2003,491(1/2/3):101-109.
    [26] Herzig A. The analysis of planktonic rotifer populations:A plea for long-term investigations. Hydrobiologia,1987,147(1):163-180.
    [27] Xi YL,Ge YL,Chen F et al. Life history characteristics of three strains of Brachionus calyciflorus(Rotifera)at different temperatures. Journal of Freshwater Ecology,2005,20(4):707-713.
    [28] Ma Q,Xi YL,Zhang JY et al. Differences in life table demography among eight geographic populations of Brachionus calyciflorus(Rotifera)from China. Limnologica,2010,40(1):16-22.
    [29] Pérez-Legaspi IA,Rico-Martínez R. Effect of temperature and food concentration in two species of littoral rotifers. Hydrobiologia,1998,387/388:341-348.
    [30] Xi YL,Dong LL,Ge YL et al. Resting egg production of Brachionus calyciflorus(Rotifera)at different water temperatures.Journal of Freshwater Ecology,2004,19(4):567-573.
    [31] Sarma SSS,Nandini S. Life table demography and population growth of Brachionus variabilis Hempel,1896 in relation to Chlorella vulgaris densities. Hydrobiologia,2001,446/447(1):75-83.
    [32] Ma J,Xi YL,Xu DD et al. Effects of temperature and algal density on life history characteristics and morphotype in offspring of two Brachionus diversicornis morphotypes. J Lake Sci,2011,23(4):597-604. DOI:10.18307/2011.0416.[马杰,席贻龙,许丹丹等.温度和食物密度对两种形态型裂足臂尾轮虫(Brachionus diversicornis)生活史特征和后代形态型的影响.湖泊科学,2011,23(4):597-604.]
    [33] Ning LF,Xi YL,Sun Q et al. Combined effects of temperature and algal food density on life table demography of Brachionus diversicornis(Rotifera). J Lake Sci,2013,25(2):295-301. DOI:10.18307/2013.0218.[宁乐锋,席贻龙,孙强等.温度和食物密度对裂足臂尾轮虫(Brachionus diversicornis)生命表统计学参数的影响.湖泊科学,2013,25(2):295-301.]
    [34] Virro T,Haberman J,Haldna M et al. Diversity and structure of the winter rotifer assemblage in a shallow eutrophic northern temperate Lake Vrtsjrv. Aquatic Ecology,2009,43(3):755-764.
    [35] Spoljar M,Habdija I,Primc-Habdija B et al. Impact of environmental variables and food availability on rotifer assemblage in the karstic barrage Lake Visovac(Krka River,Croatia). International Review of Hydrobiology,2005,90(5/6):555-579.
    [36] De Mott WR. The role of competition in zooplankton succession∥Sommer U ed. Plankton ecology. Springer,1989:195-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700