用户名: 密码: 验证码:
纳米零价铁的制备、改性及对废水中重金属和有机污染物的去除
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation, modification of nanoscale zero valent iron and its application for the removal of heavy metals and organic pollutants from wastewater
  • 作者:杨晓丹 ; 王玉如 ; 李敏睿
  • 英文作者:YANG Xiaodan;WANG Yuru;LI Minrui;School of Geography and Tourism, Shaanxi Normal University;National Demonstration Center for Experimental Geography Education, Shaanxi Normal University;
  • 关键词:纳米零价铁 ; 废水 ; 吸附 ; 重金属 ; 有机污染物
  • 英文关键词:nanoscale zero valent iron(nZVI);;wastewater;;adsorption;;heavy metals;;organic pollutants
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:陕西师范大学地理科学与旅游学院;地理学国家级实验教学示范中心(陕西师范大学);
  • 出版日期:2019-04-30 16:59
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.334
  • 基金:国家自然科学基金(51508317);; 中央高校基本科研业务费项目(GK201703044,GK201802018);; 中国博士后科学基金(2016M602762);; 陕西省博士后科研项目(2017BSHTDZZ09)
  • 语种:中文;
  • 页:HGJZ201907044
  • 页数:13
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:405-417
摘要
纳米零价铁(nZVI)结合了零价铁还原性强和纳米材料比表面积大的特点,能够高效去除水体中的重金属和有机污染物,是当前环境科学领域研究的热点之一。研究表明单一nZVI颗粒存在易团聚及表面易被氧化等问题,影响nZVI颗粒形态和对污染物去除效果,限制了其在环境修复中的应用。针对目前的研究现状,本文分析并总结了以下内容:①nZVI常用的制备方法;②提高nZVI活性与稳定性的改性方法,如合成时添加表面活性剂和负载材料;③nZVI去除废水中Cr、Cd、Cu和As等重金属和硝基苯、氯代芳烃、氯代脂肪烃等有机污染物的主要机理及影响因素;④应用于自然环境中的nZVI可能对环境产生的毒理学效应和在环境修复过程中存在的潜在风险及其评估;⑤对nZVI今后的研究重点和方向进行分析和展望。
        Combined with the outstanding reducing property of zero-valent iron and enormous surface area of the nanometer materials, nanoscale zero-valent iron(nZVI) can efficiently remove heavy metals and organic pollutants from wastewater and becomes one of the hottest topics in environmental science.Previous studies have found that single nZVI particle can easily get agglomeration and surface oxidation,which can influence the morphology of nZVI particle and deteriorate the ability of removing contaminants.Based on current research status, this article has summarized the following contents:(1) the regular preparation methods of nZVI in recent years;(2) the modification methods to improve the activity and stability of nZVI, such as surfactants and loading materials;(3) the main mechanism, influencing factors and toxicological effect of using nZVI to remove heavy metals such as Cr, Cd, Cu and As, and organic pollutants such as nitrobenzene, chlorinated aromatic hydrocarbons and chlorinated aliphatic hydrocarbons from wastewater;(4) the toxicological effects of nZVI applied to the natural environment, and potential risks in environmental remediation process; and(5) the future research emphasis and direction of nZVI.
引文
[1]李瑞农.中国环境统计年鉴-环境统计表[M].北京:中国环境年鉴社, 2016:633-638.LI Ruinong. China statistical yearbook on environment-environmental statistics[R]. Beijing:Yearbook of China’s Environmental and Social,2016:633-638.
    [2] GILLHAM R W, O, HANNSIN S F. Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Ground Water, 1994, 32(6):958-967.
    [3] KORNILPVYCH B, WIREMAN M, UBALDINI S, et al. Uranium removal from groundwater by permeable reactive barrier with zerovalent iron and organic carbon mixtures:laboratory and field studies[J].Metals, 2018, 8(6):1-15.
    [4]王素娜,江国庆,白俊峰,等.无机分子纳米材料的研究进展[J].无机化学学报, 2005, 21(1):1-11.WANG Suna, JIANG Guoqing, BAI Junfeng, et al. Research progress on inorganic molecular nanomaterials[J]. Chinese Journal of Inorganic Chemistry, 2005, 21(1):1-11.
    [5] CRANE R A, SAPSFORD D J. Sorption and fractionation of rare earth element ions onto nanoscale zerovalent iron particles[J]. Chemical Engineering Journal, 2018, 345:126-137.
    [6] WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science Technology, 1997, 31(7):2154-2156.
    [7] ZHU N M, XU Y S, DAI L, et al. Application of sequential extraction analysis to Pb(Ⅱ)recovery by zerovalent iron-based particles[J].Journal of Hazardous Materials, 2018, 351:138-146.
    [8]陈海军,黄舒怡,张志宾,等.功能性纳米零价铁的构筑及其对环境放射性核素铀的富集应用研究进展[J].化学学报, 2017, 75(6):560-574.CHEN Haijun, HUANG Shuyi, ZHANG Zhibin, et al. Synthesis of functional nanoscale zero-valent iron composites for the application of radioactive uranium enrichment from environment:a review[J]. Acta Chimica Sinica, 2017, 75(6):560-574.
    [9] CAO Z, LIU X, XU J, et al. Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron[J]. Environmental Science Technology, 2017, 51(19):11269-11277.
    [10] SHI X D, RUAN W Q, HU J W, et al. Optimizing the removal of Rhodamine B in aqueous solutions by reduced graphene oxidesupported nanoscale zerovalent iron(nZVI/rGO)using an artificial neural network-genetic algorithm(ANN-GA)[J]. Nanomaterials, 2017,7(6):134-152.
    [11] LI S L, WANG W, LIANG F P, et al. Heavy metal removal using nanoscale zero-valent iron(nZVI):theory and application[J]. Journal of Hazardous Materials, 2017, 322:163-171.
    [12] ZHANG S H, WU M F, TANG T T, et al. Mechanism investigation of anoxic Cr(Ⅵ)removal by nano zero-valent iron based on XPS analysis in time scale[J]. Chemical Engineering Journal, 2018, 335:945-953.
    [13] TANG L, FENG H, TANG J, et al. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3nanobunches:the effect of environmental conditions and reaction mechanism[J]. Water Research,2017, 117:175-186.
    [14]赵旭飞,魏才倢,张瑾,等.不同粒径零价铁颗粒降解地下水中卤代烃的动力学研究[J].北京大学学报(自然科学版), 2018, 54(2):435-442.ZHAO Xufei, WEI Caijie, ZHANG Jin,et al. Reductive removal of four halogenated organic compounds by different sizes of zero-valent-iron[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(2):435-442.
    [15] OUYANG H, WEI C Y, SHI H Y. Short-chain organic acids increase the reactivity of zerovalent iron nanoparticles toward polychlorinated aromatic pollutants[J]. Chemical Engineering Journal, 2016, 284:372-379.
    [16] LI H, QIU Y F, WANG X L, et al. Biochar supported Ni/Fe bimetallic nanoparticles to remove 1,1,1-trichloroethane under various reaction conditions[J]. Chemosphere, 2017, 169:534-541.
    [17]冯婧微.纳米零价铁及铁(氢)氧化物去除水中Cr和Cu的机制研究[D].沈阳:沈阳工业大学, 2012:25-29.FENG Jingwei. Mechanisms of chromium and copper removal with nanoscale zero-valent iron and iron oxides/hydroxides[D]. Shenyang:Shenyang University of Technology, 2012:25-29.
    [18]秦伯雄,曾悦坚,张炳范,等.等离子体制纳米铁粉技术[J].天津大学学报(自然科学与工程技术版), 1996, 29(2):315-318.QIN Boxiong, ZENG Yuejian, ZHANG Bingfan, et al. Study on developing iron ultrafine powders[J]. Journal of Tianjin University(Science and Technology), 1996, 29(2):315-318.
    [19] SEYED S M, RABIEE H, SHAHABADI S, et al. Synthesis of zerovalent iron nanoparticles via electrical wire explosion for efficient removal of heavy metals[J]. CSAWAC, 2017, 45(3):139-148.
    [20]潘成福,侯登录,张民.纳米Fe微粒的溅射制备及粒度计算[J].磁记录材料, 1999(2):8-10.PAN Chengfu, HOU Denglu, ZHANG Min. Sputtering preparation and particle size calculation of nano-Fe particles[J]. Information Recording Materials, 1999(2):8-10.
    [21] ZHOU S M, LI Y, CHEN J T, et al. Enhanced Cr(Ⅵ)removal from aqueous solutions using Ni/Fe bimetallic nanoparticles:characterization, kinetics and mechanism[J]. RSC Advances, 2014, 4:50699-50707.
    [22]董洋,温春宇,于锦秋,等.乳化纳米铁修复硝基苯污染含水层研究[J].中国环境科学, 2017, 37(12):4541-4548.DONG Yang, WEN Chunyu, YU Jinqiu, et al. Laboratory evaluation of degradation of nitrobenzene in aquifer using emulsified nanoscale zero-valent iron[J]. China Environmental Science, 2017, 37(12):4541-4548.
    [23]尹秉胜,马厚义,陈慎豪.电化学技术制备纳米材料研究的新进展[J].化学进展, 2004, 16(2):196-203.YI Binsheng, MA Houyi, CHEN Shenhao. New progress in electrochemical preparation of nanomaterials[J]. Progress in Chemistry,2004,16(2):196-203.
    [24] LI S L, YAN W L, ZHANG W. Solvent-free production of nanoscale zero-valent iron(nZVI)with precision milling[J]. Green Chemical,2009, 11:1618-1626.
    [25] XU C, WANG X, AN Y, et al. Preparation of organosolv ligninstabilized nano zero-valent iron and its application as granular electrode in the tertiary treatment of pulp and paper wastewater[J].Chemical Engineering Journal, 2018, 331:317-325.
    [26] LIU X, CAO Z, YUAN Z L, et al. Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2017, 334:508-518.
    [27] ZHANG Y L, SUA Y M, ZHOU X F, et al. A new insight on the coreshell structure of zerovalent iron nanoparticles and its application for Pb(II)sequestration[J]. Journal of Hazardous Materials, 2013, 263:685-693.
    [28] ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero valent iron and its composites for the removal of heavy metal ions:a review[J]. Environmental Science Technology, 2016, 50:7290-7304.
    [29] ZHU N M, LI Y, ZHANG F S. Catalytic dechlorination of polychlorinated biphenyls in subcritical water by Ni/Fe nanoparticles[J]. Chemical Engineering Journal, 2011, 171:919-925.
    [30] SOHN K, KANG S, AHN S, et al. Fe(0)nanoparticles for nitrate reduction:stability, reactivity, and transformation[J]. Environmental Science Technology, 2006, 40:5514-5519.
    [31] LING L, HUANG X R, LI M Y, et al. Mapping the reactions in a single zero-valent iron nanoparticle[J]. Environmental Science Technology,2017, 51:14293-14300.
    [32] HUANG D L, HU Z X, PENG Z W, et al. Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating[J]. Journal of Environmental Management, 2018, 210:191-200.
    [33] MU Y, JIA F L, AI Z H, et al. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron[J]. Environmental Science Nano, 2017, 4:27-45.
    [34] PENG Z L, XIONG C M, WANG W, et al. Facile modification of nanoscale zero-valent iron with high stability for Cr(Ⅵ)remediation[J].Science of the Total Environment, 2017, 596/597:266-273.
    [35]邱心泓,方战强.修饰型纳米零价铁降解有机卤化物的研究[J].化学进展, 2010, 22(2/3):291-297.QIU Xinhong, FANG Zhanqiang. Degradation of halogenated organic compoundsby modified nano zero-valent iron[J]. Progress in Chemistry,2010, 22(2/3):291-297.
    [36] BOPARAI H K, JOSEPH M, O'Carroll, et al. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J]. Journal of Hazardous Materials, 2011, 186(1):458-465.
    [37] FAN J, GUO Y H,WANG J J, et al. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles[J]. Journal of Hazardous Materials, 2009, 166(2/3):904-910.
    [38] CHEN S, BEDIA J, LI H, et al. Nanoscale zero-valent iron@mesoporous hydrated silica core-shell particles with enhanced dispersibility, transportability and degradation of chlorinated aliphatic hydrocarbons[J]. Chemical Engineering Journal, 2018, 343:619-628.
    [39] LIU T Y, WANG Z L, YAN X X, et al. Removal of mercury(Ⅱ)and chromium(Ⅵ)from wastewater using a new and effective composite:pumice-supported nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2014, 245:34-40.
    [40]杨艺琳,周孜迈,邓文娜,等.浮石负载纳米零价铁去除水相中的砷(Ⅴ)[J].环境化学, 2017, 36(3):598-607.YANG Yilin, ZHOU Zimai, DENG Wenna, et al. Removal of arsenic(Ⅴ)from aqueous solutions using improved nanoscale zero-valent iron on pumice[J]. Environmental Chemistry, 2017, 36(3):598-607.
    [41] FU R, YANG Y, XU Z, et al. The removal of chromium(Ⅵ)and lead(Ⅱ)from groundwater using sepiolite-supported nanoscale zerovalent iron(S-NZVI)[J]. Chemosphere, 2015, 138:726-734.
    [42] QU G Z, KOU L Q, WANG T, et al. Evaluation of activated carbon fiber supported nanoscale zero-valent iron for chromium(Ⅵ)removal from groundwater in a permeable reactive column[J]. Journal of Environmental Management, 2017, 201:378-387.
    [43]胡六江,李益民.有机膨润土负载纳米铁去除废水中硝基苯[J].环境科学学报, 2008, 28(6):1107-1112.HU Liujiang, LI Yimin. Removal of nitrobenzene from synthetic wastewater by nanoscalezero-valent iron supported onorgan obentonite[J]. Acta Scientiae Circumstantiae, 2008, 28(6):1107-1112.
    [44] SU Y M, SADELEYE A, KELLER A A, et al. Magnetic sulfidemodified nanoscale zerovalent iron(S-nZVI)for dissolved metal ion removal[J]. Water Research, 2015, 74:47-57.
    [45] WU B, PENG D, HOU S, et al. Dynamic study of Cr(Ⅵ)removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron[J]. Environmental Pollution, 2018,240:717-724.
    [46] SHAO Y L, ZHAO P, YUE Q Y, et al. Preparation of wheat strawsupported nanoscale zero-valent iron and its removal performance on ciprofloxacin[J]. Ecotoxicology and Environmental Safety, 2018, 158:100-107.
    [47] DIAO Z H, DU J J, JIANG D, et al. Insights into the simultaneous removal of Cr6+and Pb2+by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron:coexistence effect and mechanism[J]. Science of the Total Environment, 2018, 642:505-515.
    [48] DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron(nZVI)with modified biochar for Cr(Ⅵ)removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332:79-86.
    [49]曾淦宁,武晓,郑林,等.负载纳米零价铁铜藻基活性炭的制备及其去除水中Cr(Ⅵ)的研究[J].环境科学, 2015, 30(2):530-536.ZENG Jinning, WU Xiao, ZHENG Lin, et al. Preparation of nano zerovalent iron/sargassum horneri based activated carbon for removal of Cr(Ⅵ)from aqueous solution[J]. Environmental Science, 2015, 30(2):530-536.
    [50] GU M, FAROOQ U, LU S, et al. Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments[J]. Journal of Hazardous Materials, 2018, 349:35-44.
    [51] WANG X Y, CHEN C, CHANG Y, et al. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles[J]. Journal of Hazardous Materials, 2009, 161:815-823.
    [52] MA Y Y, LV X F, YANG Q, et al. Reduction of carbon tetrachloride by nanoscale palladized zero-valent iron@graphene composites:kinetics,activation energy, effects of reaction conditions and degradation mechanism[J]. Applied Catalysis A:Environmental, 2017, 542:252-261.
    [53] SHENG G D, HU J, LI H. Enhanced sequestration of Cr(Ⅵ)by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study[J]. Chemosphere, 2016, 148:227-232.
    [54]董军,王敏,刘登峰,等.地下水化学成分对植物油改性纳米铁还原硝基苯影响[J].中国环境科学, 2014, 34(7):1769-1775.DONG Jun, WANG Min, LIU Dengfeng, et al. Effects of groundwater chemical composition on nitrobenzene reduction by vegetable oil modified nano-iron[J]. China Environmental Science, 2014, 34(7):1769-1775.
    [55] EGLAL M M, RAMAMURHY A S. Removal of Pb(Ⅱ), Cd(Ⅱ), Cu(Ⅱ)and trichloroethylene from water by nanofer ZVI[J]. Journal of Environmental Science and Health Part A, 2015, 50:901-912.
    [56]和婧,王向宇,王培,等. PAA改性纳米铁强化还原降解水中亚甲基蓝[J].环境科学, 2015, 36(3):980-988.HE Jing, WANG Xiangyu, WANG Bei, et al. Enhanced reductive decoloration of methylene blue by polyacrylic acid modified zerovalent iron nanoparticles[J]. Environmental Science, 2015, 36(3):980-988.
    [57]肖燕萍,宋新山,赵志淼,等.海藻酸钠/蒙脱石联合负载型纳米Fe对Cu(Ⅱ)的去除研究[J].环境科学学报, 2017, 37(1):227-233.XIAO Yanping, SONG Xinshan, ZHAO Zhimiao, et al. Removal of Cu(Ⅱ)using nanoscale zero-valent iron supported on sodium alginate and montmorillonite[J]. Acta Scientiae Circumstantiae, 2017, 37(1):227-233.
    [58] JAMEI M R, KHOSRAVI M R, ANVARIPOUR B. A novel ultrasound assisted method in synthesis of NZVI particles[J]. Ultrasonics Sonochemistry, 2014, 21:226–233.
    [59]边森,钱枫,王志楠,等.超声波-零价铁粉还原降解含氯有机物的研究[J].环境科学与技术, 2010, 33(s2):137-140.BIAN Sen, QIAN Feng, WANG Zhinan, et al. Reductive dechlorination of chlorinated organic compounds by ultrasound with zero valent iron[J]. Environmental Science&Technology, 2010, 33(s2):137-140.
    [60]汪涛,张贺,张沙,等.超声波联用技术在污水处理中的研究进展[J].现代化工, 2015, 35(7):10-13.WANG Tao, ZHANG He, ZHANG Sha, et al. Research progress of ultrasonic coupling technique for wastewater treatment[J]. Modern Chemical Industry, 2015, 35(7):10-13.
    [61] LIU J, LIU A R, ZHANG W X. The influence of polyelectrolyte modification on nanoscale zero-valent iron(nZVI):aggregation,sedimentation, and reactivity with Ni(Ⅱ)in water[J]. Chemical Engineering Journal, 2016, 303:268-274.
    [62] ARUNKUMAR M, BAE S, HANC S, et al. Reductive dechlorination of trichloroethylene by polyvinylpyrrolidone stabilized nanoscale zerovalent iron particles with Ni[J]. Journal of Hazardous Materials,2017, 340:399-406.
    [63] SHI L X, CHEN J J, WANG Q W, et al. Effects of carrier on the transport and DDT removal performance of nano-zerovalent iron in packed sands[J]. Chemosphere, 2018, 209:489-495.
    [64] TAN L, LIANG B, FANG Z, et al. Effect of humic acid and transition metal ions on the debromination of decabromodiphenyl by nano zerovalent iron:kinetics and mechanisms[J]. Journal of Nanoparticle Research, 2014, 16:1-13.
    [65] LI J X, ZHANG X Y, SUN Y K, et al. Advances in sulfidation of zerovalent iron for water decontamination[J]. Environmental Science Technology, 2017, 51:13533-13544.
    [66] LIU T Y, WANG Z L, ZHAO L, et al. Enhanced chitosan/Fe0-nanoparticles beads for hexavalent chromium removal from wastewater[J]. Chemical Engineering Journal, 2012, 189/190:196-202.
    [67]陈喆,房丽莎,谭韵盈,等. CMC-nZVI对高硫矿山土壤中铜的固定效果及机理[J].环境科学学报, 2017, 37(11):4336-4343.CHEN Zhe, FANG Lisha, TAN Yunying, et al. Immobilization of Cu in high sulfate mine soil using stabilized nonoscale zero-valent iron[J].Acta Scientiae Circumstantiae, 2017, 37(11):4336-4343.
    [68] JABEEN H, KEMP K C, CHANDRA V J. Synthesis of nano zerovalent iron nanoparticles-Graphene composite for the treatment of lead contaminated water[J]. Journal of Environmental Management, 2013,130:429-435.
    [69] ZHU S S, HO S H, HUANG X C, et al. Magnetic nanoscale zerovalent iron assisted biochar:interfacial chemical behaviors and heavy metals remediation performance[J]. Sustainable Chemical Engineer, 2017, 5:9673-9682.
    [70] BHATNAGAR A, MINOCHA A K. Biosorption optimization of nickel removal from water using Punica granatum peel waste[J]. Colloids and Surfaces B:Biointerfaces, 2010, 76(2):544-548.
    [71] LI X Q, ZHANG W X. Sequestration of metal cations with zerovalent iron nanoparticless:a study with high resolution X-ray photoelectron spectroscopy(HR-XPS)[J]. Journal of Physical Chemistry C, 2007,111:6939-6946.
    [72] ANTHELMAN M S, HARRIS F J. The encyclopedia of chemical electrode potentials[M].New York:Plenum Press, 1982:50-88.
    [73] CRANEA R A, SAPSFORD D J. Selective formation of copper nanoparticles from acid mine drainage using nanoscale zerovalent iron particles[J]. Journal of Hazardous Materials, 2018, 347:252-265.
    [74] MOHAN D, Jr PITTMAN C U. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water(review)[J]. Journal of Hazardous Materials B, 2006, 137:762-811.
    [75]秦泽敏,董黎明,刘平,等.零价纳米铁吸附去除水中六价铬的研究[J].中国环境科学, 2014, 34(12):3106-3111.QIN Zemin, DONG Liming, LIU Ping, et al. Removal Cr6+from water using nanoscale zero-valent iron[J]. China Environmental Science,2014, 34(12):3106-3111.
    [76]周孜迈,邓文娜,杨艺琳,等.零价铁活化过硫酸钠去除废水中的砷(Ⅴ)[J].环境科学, 2017, 11(38):4623-4631.ZHOU Zimai, DENG Wenna, YANG Yilin, et al. Zero-valent iron(ZVI)activation of persulfate(PS)for oxidation of arsenic(Ⅴ)form aqueous solutions[J]. Environmental Science, 2017, 11(3):4623-4631.
    [77]吕国晓,尹军,刘蕾,等. pH值对零价铁还原降解模拟地下水中硝基苯的影响[J].环境化学, 2009, 28(3):355-359.LüGuoxiao, YIN Jun, LIU Lei, et al. Effect of pH on the degradation of zero-valent iron to simulate nitrobenzene in groundwater[J].Environmental Chemistry, 2009, 28(3):355-359.
    [78] SCHERER M M, JOHNSON K. M, WESTALL J C, et al. Mass transport effects on the kinetics of nitrobenzene reduction by iron metal[J]. Environmental Science Technology, 2001, 35:2804-2811.
    [79] LI L X, ZHANG S S, LU B, et al. Nitrobenzene reduction using nanoscale zero-valent iron supported by polystyrene microspheres with different surface functional groups[J]. Environmental Science and Pollution Research, 2018, 25:7916-7923.
    [80] WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science Technology, 1997, 31(7):2154-2156.
    [81] ZHANG W, XIAO T, LIU N, et al. The removal of chlorinated aliphatic hydrocarbons from water using reactive activated carbon:the influence of synthesis factors and reaction environments[J]. Environmental Technology, 2018, 39(10):1328-1339.
    [82]吴德礼,王红武,马鲁铭.催化铁还原去除含氯有机物生物毒性的研究[C]//持久性有机污染物论坛2 0 0 6暨第一届持久性有机污染物全国学术研讨会.北京:中国化学会, 2006:219-223.WU Deli, WANG Hongwu, MA Luming. Biotoxicity removal of chlorinated organic compounds by catalytic iron reduction[C]//Forum on Persistent Organic Pollutants 2006 and the First National Symposium on Persistent Organic Pollutants. Beijing:Chinese Chemical Society, 2006:219-223.
    [83] ARNOLD W A, ROBERTS A L. Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn(0)[J]. Environmental Science Technology, 1998, 32:3017-3025.
    [84] MATHESON L J, TRATNYEK P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science Technology, 1994, 28:2045-2053.
    [85] CHUANG F W, LARSON R, WESSMAN M. Zero-valent ironpromoted dechlorination of polychlorinated biphenyls[J]. Environmental Science Technology, 1995, 29:2460-2463.
    [86] DONG H R, JIANG Z, ZHANG C, et al. Removal of tetracycline by Fe/Ni bimetallic nanoparticles in aqueous solution[J]. Journal of Colloid and Interface Science, 2018, 513:117-125.
    [87]成岳,焦创,樊文井,等.包覆型纳米零价铁的制备及其去除水中的活性艳蓝[J].环境工程学报, 2013,7(1):53-57.CHENG Yue, JIAO Chuang, FAN Wenjing, et al. Preparation of coated nanoscale zero-valent iron and its application in removing KN-R from wastewater[J]. Chinese Journal of Environmental Engineering, 2013, 7(1):53-57.
    [88] LIANG J, XIA X, YUAN L, et al. The reproductive responses of earthworms(Eisenia fetida)exposed to nanoscale zero-valent iron(nZVI)in the presence of decabromodiphenyl ether(BDE209)[J].Environmental Pollution, 2018, 237:784-791.
    [89] LEE C, KIM J Y, LEE W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science Technology, 2008, 42(13):4927–4933.
    [90] QIU X, FANG Z, YAN X, et al. Chemical stability and toxicity of nanoscale zero-valent iron in the remediation of chromiumcontaminated watershed[J]. Chemical Engineering Journal, 2013, 220:61-66.
    [91] NGUYEN N H A, VON M N R, SLAVEYKVAl V I, et al. Biological effects of four iron-containing nano remediation materials on the green alga Chlamydomonas sp.[J]. Ecotoxicology and Environmental Safety,2018, 154:36-44.
    [92] NGUYEN N H A,?P NEK R, KASALICK V, et al. Different effects of nano-scale and micro-scale zero-valent iron particles on planktonic microorganisms from natural reservoir water[J]. Environmental Science Nano, 2018, 5(5):1117-1129.
    [93]王学,李勇超,李铁龙,等.零价纳米铁对大肠杆菌的毒性效应[J].生态毒理学报, 2012, 7(1):49-56.WANG Xue, LI Yongchao, LI Tielong. et al. Toxicity effects of nanoFe0on Escherichia coli[J]. Asian Journal of Ecotoxicology, 2012, 7(1):49-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700