用户名: 密码: 验证码:
长江口潮滩沉积物古菌群落结构与多样性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Archaeal community structure and diversity in intertidal sediments of the Yangtze River Estuary
  • 作者:李小飞 ; 侯立军 ; 刘敏
  • 英文作者:LI Xiao-fei;HOU Li-jun;LIU Min;Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University;State Key Laboratory of Estuarine and Costal Research, East China Normal University;Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University;
  • 关键词:高通量测序 ; 古菌群落 ; 多样性 ; 潮滩沉积物
  • 英文关键词:high-throughput sequencing;;archaeal community;;diversity;;intertidal sediment
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:福建师范大学湿润亚热带生态地理过程教育部重点实验室;华东师范大学河口海岸学国家重点实验室;华东师范大学地理科学学院地理信息科学教育部重点实验室;
  • 出版日期:2019-04-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(41701548,41761144062)
  • 语种:中文;
  • 页:ZGHJ201904054
  • 页数:9
  • CN:04
  • ISSN:11-2201/X
  • 分类号:402-410
摘要
以长江口潮滩为研究对象,采用高通量测序技术,研究了潮滩沉积物古菌群落结构与多样性及其影响因素.结果表明,沉积物中古菌群落OTUs数量为900~1417,Shannon指数为7.02~8.02,均表现出从低盐度向高盐度样点降低的变化特征.各采样点古菌群落特异性OTUs占各采样点总OTUs的24.2%~57.3%,而共有的OTUs仅占1.2%,说明各样点沉积物中古菌群落特异性较高.沉积物中古菌主要隶属于广古菌门(Euryarchaeota)和奇古菌门(Thaumarchaeota),而深古菌门(Bathyarchaeota)也是古菌群落的重要组成部分,其相对丰度占到17.7%~25.9%.主成分和聚类分析表明芦潮港和东海农场沉积物中古菌群落结构相似,白龙港和浏河口群落组成相近,而浒浦与其他采样点的古菌群落组成差别较大.通过典范对应分析,研究区沉积物中古菌群落结构与沉积物盐度水平有着非常密切的关系.上述研究结果表明长江口潮滩沉积物中古菌群落结构组成和多样性具有高度的空间差异性,且沉积物盐度是群落差异的决定性影响因素.
        High-throughput sequencing was used to investigate the archaeal community structure and diversity, and associated influencing factors in the intertidal sediments of the Yangtze Estuary. The results indicated that the OTUs and Shannon index of archaeal community in the intertidal sediments were 900~1417 and 7.02~8.02, respectively, which both decreased from low to high salinity sampling sites. The specific OTUs of archaeal community structure accounted for 24.2%~57.3% of total OTUs in each sampling site, and identical OTUs only occupied for 1.2%, indicating that archaeal community structure varied highly along the sampling sites. The archaeal community was dominated by the Euryarchaeota and Thaumarchaeota. The Bathyarchaeota contributed a great parts of archaeal community, accounting for 17.7%~25.9% of total community. The principal component and cluster analysis suggested that the archaeal community structure in sites LCG and DHNC was similar, and archaeal community structure in BLG showed a similarity with LHK, while archaeal community structure showed a great difference in XP compared to others sampling sites. Canonical correlation analysis suggested that distribution of archaeal community structure in the intertidal sediments was tightly correlated with the sediment salinity. These results indicated that archaeal community structure and diversity were highly variable in the intertidal sediments of the Yangtze Estuary. In addition, sediment salinity was the crucial factor affecting the variabilities in archaeal community structure and diversity in the Yangtze Estuary.
引文
[1]Zhou M,Butterbach-Bahl K,Vereecken H,et al.A meta-analysis of soil salinization effects on nitrogen pools,cycles and fluxes in coastal ecosystems[J].Global Change Biology,2017,23(3):1338-1352.
    [2]Van de Broek M,Vandendriessche C,Poppelmonde D,et al.Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary[J].Global Change Biology,2018,https://doi.org/10.1111/gcb.14089.
    [3]刘远,张辉,熊明华,等.气候变化对土壤微生物多样性及其功能的影响[J].中国环境科学,2016,36(12):3793-3799.Liu Y,Zhang H,Xiong M H,et al.Effect of climate change on soil microbial diversity and function[J].China Environmental Science,2016,36(12):3793-3799.
    [4]Kirchman D L,Cottrel M T,DiTullio G R.Shaping of bacterial community composition and diversity by phytoplankton and salinity in the Delaware Estuary,USA[J].Aquatic Microbial Ecology,2017,78(2):93-106.
    [5]Hou L J,Zheng Y L,Liu M,et al.Anaerobic ammonium oxidation(anammox)bacterial diversity,abundance,and activity in marsh sediments of the Yangtze Estuary[J].Journal Geophysical Research:Biogeosciences,2013,118:1237-1246.
    [6]Kirwan M L,Megonigal J P.Tidal wetland stability in the face of human impacts and sea-level rise[J].Nature,2013,504:53-60.
    [7]Osborne R I,Bernot M J,Findlay S E.Changes in nitrogen cycling processes along a salinity gradient in tidal wetlands of the Hudson River,New York,USA[J].Wetlands,2015,35(2):323-334.
    [8]Xiong J B,Ye X S,Wang K,et al.Biogeography of the sediment bacterial community responds to a nitrogen pollution gradient in the East China Sea[J].Applied and Environmental Microbiology,2014,80(6):1919-1925.
    [9]Li X F,Hou L J,Liu M,et al.Primary effects of extracellular enzyme activity and microbial community carbon and nitrogen mineralization in estuarine and tidal wetlands[J].Applied Microbiology and Biotechnology,2015,99(6):2895-2909.
    [10]Eggleston E M,Lee D Y,Owens M S,et a I.Key respiratory genes elucidate bacterial community respiration in a seasonally anoxic estuary[J].Environmental Microbiology,2015,17(7):2306-2318.
    [11]郑艳玲,侯立军,陆敏,等.崇明东滩夏冬季表层沉积物细菌多样性研究[J].中国环境科学,2012,32(2):300-310.Zheng Y L,Hou L J,Lu M,et al.The bacterial diversity in surface sediments from Chongming Eastern tidal flat in summer and winter[J].China Environmental Science,2012,32(2):300-310.
    [12]Woese C R,Kandler O,Wheelis M L.Towards a natural system of organisms:proposal for the domains Archaea,Bacteria,and Eucarya.[J].Proceedings of the National Academy of Sciences,1990,87(12):4576-4579.
    [13]俞冰倩,杨赛,朱琳,等.响应土壤阴离子类型的盐碱土古细菌群落多样性研究[J].中国环境科学,2018,38(7):2731-2739.Yu B Q,Yang S,Zhu L,et al.Diversity characteristic of archaeal community responding to soil anion in saline-alkali soil[J].China Environmental Science,2018,38(7):2731-2739.
    [14]Spang A,Saw J H,J?rgensen S L,et al.Complex archaea that bridge the gap between prokaryotes and eukaryotes[J].Nature,2015,521(7551):173-179.
    [15]Pascual J A,Garcia C,Hernandez T,et al.Soil microbial activity as a biomarker of degradation and remediation processes[J].Soil Biology and Biochemistry,2000,32(13):1877-1883.
    [16]刘旻霞,李瑞,张灿,等.兰州市南山季节性土壤微生物特征及影响因素[J].中国环境科学,2018,38(7):2722-2730.Liu M X,Li R,Zhang C,et al.Seasonal characteristics and influencing factors of soil microbial in Nanshan,Lanzhou[J].China Environmental Science,2018,38(7):2722-2730.
    [17]Yin G Y,Hou L J,Liu M,et al.DNRA in intertidal sediments of the Yangtze Estuary[J].Journal Geophysical Research:Biogeosciences,2017,122(8):1988-1998.
    [18]Chen X,Zhong Y.Coastal erosion along the Changjiang deltaic shoreline,China:History and prospective[J].Estuarine,Coastal and Shelf Science,1998,46:733-742.
    [19]Tang Y S,Wang L,Jia J W,et al.Response of soil microbial respiration of tidal wetlands in the Yangtze River Estuary to different artificial disturbances[J].Ecological Engineering,2011,37:1638-1646.
    [20]Dai Z J,Du J Z,Zhang X L,et al.Variation of riverine material loads and environmental consequences on the Changjiang(Yangtze)Estuary in recent decades(1955-2008)[J].Environmental Science&Technology,2010,45(1):223-227.
    [21]Lovley D R,Phillips E J P.Rapid assay for microbially reducible ferric iron in aquatic sediments[J].Applied and Environmental Microbiology,1987,53:1536-1540.
    [22]Pires A C,Cleary D F,Almeida A,et al.Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples[J].Applied and Environmental Microbiology,2012,78:5520-5528.
    [23]Waldrop M P,Holloway J M,Smith D B,et al.The interacting roles of climate,soils,and plant production on soil microbial communities at a continental scale[J].Ecology,2017,98(7):1957-1967.
    [24]Leininger S,Urich T,Schloter M,et al.Archaea predominate among ammonia-oxidizing prokaryotes in soils[J].Nature,2006,442(17):806-809.
    [25]鲍林林,陈永娟,王晓燕.北运河沉积物中氨氧化微生物的群落特征[J].中国环境科学,2015,35(1):179-189.Bao L L,Chen Y J,Wang X Y,et al.Diversity and abundance of ammonia-oxidizing prokaryotes in surface sediments in Beiyun River[J].China Environmental Science,2015,35(1):179-189.
    [26]张玥,孔强,郭笃发,等.黄河三角洲土壤古菌群落结构对盐生植被演替的响应[J].中国环境科学,2016,36(7):2162-2168.Zhang Y,Kong Q,Guo D F,et al.The response of soil archaeal community structure to halophyte vegetation succession in the Yellow River Delta[J].China Environmental Science,2016,36(7):2162-2168.
    [27]Meng J,Xu J,Qin D,et al.Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses[J].ISME Journal,2014,8:650-659.
    [28]曾志华,杨民和,佘晨兴,等.闽江河口区淡水和半咸水潮汐沼泽湿地土壤产甲烷菌多样性[J].生态学报,2014,10:2674-2681.Zeng Z H,Yang M H,She C X,et al.Diversity of methanogen communities in tidal freshwater and brackish marsh soil in the Min River estuary[J].Acta Ecological Sinica,2014,10:2674-2681.
    [29]王炳臣,郑世玲,张洪霞,等.渤海不同区域沉积物古菌的多样性分析[J].海洋科学,2017,41(5):8-16.Wang B C,Zheng S L,Zhang H X,et al.Diversity of archaea in the sediments from different areas of the Bohai Sea[J].Marine Sciences,2017,41(5):8-16.
    [30]Zheng Y L,Hou L J,Newell S,et al.Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze Estuary[J].Applied and Environmental Microbiology,2014,80(1):408-419.
    [31]Tourna M,Freitag T E,Nicol G W,et al.Growth,activity and temperature responses of ammonia-oxidizing archae and bacteria in soil microcosms[J].Environmental Microbiology,2008,10(5):1357-1364.
    [32]Edmonds J W,Weston N B,Joye S B,et al.Microbial community response to seawater amendment in low-salinity tidal sediments[J].Microbial Ecology,2009,58(3):558-568.
    [33]钢迪嘎,齐维晓,刘会娟,等.水位变化对消落带氨氧化微生物丰度和多样性的影响[J].环境科学学报,2017,37(5):1615-1622.Gang D G,Qi W X,Liu H J,et al.The impact of water level change on the abundance and diversity of ammonia oxidizing bacteria(AOB)and ammonia oxidizing archaea(AOA)in water-fluctuating zone[J].Acta Scientiae Circumstantiae,2017,37(5):1615-1622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700