用户名: 密码: 验证码:
深圳“12.20”渣土场远程流化滑坡动力过程分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics process simulation of long run-out catastrophic landfill flowslide on December 20~(th),2015 in Shenzhen,China
  • 作者:高杨 ; 卫童瑶 ; 李滨 ; 贺凯 ; 刘铮 ; 王学良
  • 英文作者:GAO Yang;WEI Tongyao;LI Bin;HE Kai;LIU Zheng;WANG Xueliang;Institute of Geo-Mechanics,Chinese Academy of Geo-Sciences;Key Laboratory of Shale Gas and Geoengineering/Institute of Geology and Geophysics,Chinese Academy of Sciences;School of Geology Engineering and Geomatics,Chang'an University;
  • 关键词:深圳滑坡 ; 远程滑波 ; 人工堆填体 ; 动力成灾 ; DAN3D ; 流变模型 ; 数值模拟
  • 英文关键词:Shenzhen landslide;;long run-out landslide;;landfill;;dynamic disaster;;DAN3D;;rheological model;;numerical simulation
  • 中文刊名:SWDG
  • 英文刊名:Hydrogeology & Engineering Geology
  • 机构:中国地质科学院地质力学研究所;中国科学院地质与地球物理研究所/中国科学院页岩气与地质工程重点实验室;长安大学地质工程与测绘学院;
  • 出版日期:2019-01-15
  • 出版单位:水文地质工程地质
  • 年:2019
  • 期:v.46;No.285
  • 基金:中国科学院页岩气与地质工程重点实验室开放基金项目(KLSG201705);; 国家重点研发计划“岩溶山区特大滑坡成灾模式与风险防范技术”(2018YFC1504806);; 中国地质调查局地质调查项目“成渝城市群及邻区区域地壳稳定性调查”(DD20160268-4)
  • 语种:中文;
  • 页:SWDG201901018
  • 页数:11
  • CN:01
  • ISSN:11-2202/P
  • 分类号:133-142+151
摘要
文章采用DAN3D数值方法对深圳人工堆填体滑坡运动过程进行了模拟研究,探讨了深圳"12.20"滑坡远程动力成灾过程。通过研究得到以下几点结论:(1)滑坡后破坏运动主要分为两个阶段:前一阶段为滑源区内运动,体现了高孔隙水压力下滑剪切;后一阶段为在流通区和堆积区内运动,体现了高饱和度滑体流动(涌动)剪切。(2)饱水渣土滑坡远程流化运动分析中,摩擦模型适合模拟孔隙水压力作用下的滑源区渣土体的失稳下滑运动过程;宾汉姆模型适合模拟非牛顿流体饱和渣土体的流化剪切过程;摩擦-宾汉姆组合模型更适用于该类型滑坡全过程的反演运动分析。(3)深圳滑坡后破坏运动速度变化主要经历了"启动-加速-持速-减速"的运动过程,高含水渣土的固-流转化致使滑坡远程运动,并造成巨大伤亡损失。(4)模拟结果显示:堆积区平均堆积厚度为11 m,堆积范围为0.4 km2,最大运动速度为30 m/s,最大速度发生于距滑坡后缘620 m处,堆积范围、堆积厚度和运动速度同滑坡实际值基本一致。上述研究思路和方法对城市地质中渣土滑坡灾害的危险区划和渣土场科学选址评估具有一定借鉴意义。
        In this paper,DAN3D numerical method is used to simulate the Shenzhen landfill landslide,and the dynamic disaster process is discussed.The conclusions are as follows:(1) the post failure movement of landslide was mainly divided into two stages:the previous stage was in the source area,which reflected the main body dynamic shear of high pore water pressure,and the latter stage is in the propagation area and accumulation area,which reflects the flow(surging) shear of the highly saturated sliding body.(2) In the analysis of the hydrodynamic movement of saturated soil landslide,the friction model is suitable for simulating the unstable sliding shear process under pore water pressure,and the Bingham model is suitable for simulating the fluidized shear process.The Friction-Bingham(FB) combined model is more suitable for the inversion or prediction of the whole process of the landslide.(3) the velocity change of the failure motion after the landslide in Shenzhen mainly goes through the process of starting-accelerating-holding-decelerating.The solid-flow conversion causes the huge casualty loss,in which the water is the key factor which the Shenzhen landslide dynamics causes the disaster.(4) The simulation result shows,the average stacking thickness is11 m,the accumulation range is 0.4 km2,the maximum velocity is 30 m/s,and the maximum velocity occurs at 620 m from the back edge of the landslide.The accumulation range,thickness and velocity are basically consistent with the actual value of the landslide.The above research ideas and methods can be used for reference in the hazard zoning of residual landslide in urban geology and the scientific site selection assessment of residual soil site.
引文
[1]YANG H,HUANG X,THOMPSON J R,et al.The crushing weight of urban waste[J].Science,2016,351(6274):674-674.
    [2]GANDOLLA M,GABNER E,LEONI R.Stability problems with compacted landfills:the example of Sarajevo[J].ISWA Journal,1979:75-80.
    [3]KAVAZANJIAN E.The impact of degradation on MSW shear strength[C]//Geo Congress 2008:Geotechnics of Waste Management and Remediation,2008.
    [4]黄茂松,王浩然,宁兆轲.Kettleman Hills填埋场三维稳定性极限上限分析[J].岩土工程学报,2014,36(11):1994-2001.[HUANG M S,WANGH R,NING Z K.Three-dimensional stability of Kettleman Hills landfill based on upper-bound limit analysis method[J].Chinese Journal of Geotechnical Engineering,2014,36(11):1994-2001.(in Chinese)]
    [5]KOCASOY G,CURI K.The Umraniye-Hekimbasi open dump accident[J].Waste Management&Research,1995,13(4):305-314.
    [6]STARK T D,EID H T,EVANS W D,et al.Closure to“municipal solid waste landfill slope failure i:foundation and waste properties”[J].J Geotech Geoenviron Eng ASCE,2000,127(9):812-815.
    [7]BLIGHT G.Slope failures in municipal solid waste dumps and landfills:a review[J].Waste Management&Research,2008,26(5):448-463.
    [8]MERRY S M,KAVAZANJIAN E,FRITZ W U.Reconnaissance of the July 10,2000,Payatas Landfill Failure[J].J Perform Constructing Facil,2005,19(2):100-107.
    [9]PALAYPAYON M,OHTA H.Estimation of shear strength parameters of municipal solid waste in landfills[R].Core University,2007.
    [10]KOELSCH F,FRICKE K,MAHLER C,et al.Stability of landfills-The Bandung dumpsite disaster[C]//Proceedings Sardinia.2005.
    [11]YIN Y,LI B,WANG W,et al.Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J].Engineering,2016,2(2):230-249.
    [12]OUYANG C,ZHOU K,XU Q,et al.Dynamic analysis and numerical modeling of the 2015catastrophic landslide of the construction waste landfill at Guangming,Shenzhen,China[J].Landslides,2017,14(2):705-718.
    [13]GAO Y,YIN Y,LI B,et al.Investigation and dynamic analysis of the long runout catastrophic landslide at the Shenzhen landfill on December 20,2015,in Guangdong,China[J].Environmental Earth Sciences,2017,76(1),13.
    [14]阎超,于剑,徐晶磊,等.CFD模拟方法的发展成就与展望[J].力学进展,2011,41(5):562-589.[YAN C,YU J,XU J L,et al.On the achievements and prospects for the methods of computational fluid dynamics[J].Advances in Mechanics,2011,41(5):562-589.(in Chinese)]
    [15]高杨,李滨,王国章.鸡尾山高速远程滑坡运动特征及数值模拟分析[J].工程地质学报,2016,24(3):425-434.[GAO Y,LI B,WANG G Z.Motion feature and numerical simulation analysis of Jiweishan landslide with rapid and long run-out[J].Journal of Engineering Geology,2016,24(3):425-434.(in Chinese)]
    [16]高杨,殷跃平,邢爱国,等.鸡尾山高速远程滑坡-碎屑流动力学特征分析[J].中国地质灾害与防治学报,2013,24(4):46-51.[GAO Y,YIN YP,XING A G,et al.Jiweishan rapid and long run-out landslide-debris flow dynamic characteristics analysis[J].The Chinese Journal of Geological Hazard and Control,2013,24(4):46-51.(in Chinese)]
    [17]王沁,姚令侃.格子Boltzmann方法及其在泥石流堆积研究中的应用[J].灾害学,2007(3):1-5.[WANG Q,YAO L K.Lattice Boltzmann Method and Its Application In the Study on Deposition of Debris Flow.[J].Journal of Catastrophology,2007(3):1-5.(in Chinese)]
    [18]GAO Y,YIN Y,LI B,et al.Characteristics and numerical runout modeling of the heavy rainfallinduced catastrophic landslide-debris flow at Sanxicun,Dujiangyan,China,following the Wenchuan Ms 8.0 earthquake[J].Landslides,2017,14(4):1361-1374.
    [19]HUANG Y,ZHU C.Simulation of flow slides in municipal solid waste dumps using a modified MPSmethod[J].Natural hazards,2014,74(2):491-508.
    [20]SHI B,ZHANG Y,ZHANG W.Run-out of the 2015Shenzhen landslide using the material point method with the softening model[J].Bulletin of Engineering Geology and the Environment,2017:1-12.
    [21]张龙,唐辉明,熊承仁,等.鸡尾山高速远程滑坡运动过程PFC~(3D)模拟[J].岩石力学与工程学报,2012,31(增刊1):2601-2611.[ZHANG L,TANG H M,XIONG C R,et al.Movement process simulation of high-speed long-distance Jiweishan landslide with PFC3D[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(Sup 1):2601-2611.(in Chinese)]
    [22]王洋海,顾声龙,赵杰.基于DEM的滑坡堆积堰塞湖过程数值研究[J].结构工程师,2017,33(4):105-110.[WANG Y H,GU S L,ZHAO J.Study on numerical simulation of process of landslide accumulation landslide dam based on DEM[J].Structural Engineers,2017,33(4):105-110.(in Chinese)]
    [23]刘春,张晓宇,许强,等.三维离散元模型的滑坡能量守恒模拟研究[J].地下空间与工程学报,2017,13(增刊2):698-704.[LIU C,ZHANG XY,XU Q,et al.Research on energy conservation simulation of three dimensional discrete element model[J].Chinese Journal of Underground Space and Engineering,2017,13(Sup2):698-704.(in Chinese)]
    [24]张明,殷跃平,吴树仁,等.远程滑坡-碎屑流运动机理研究发展现状与展望[J].工程地质学报,2010,18(6):805-817.[ZHANG M,YIN Y P,WU S R,et al.Development status and prospects of studies on kinematics of long runout rock avalanches[J].Journal of Engineering Geology,2010,18(6):805-817.(in Chinese)]
    [25]殷跃平,李滨,王文沛,等.深圳“12·20”渣土场灾难滑坡成灾机理与岩土工程风险控制研究[J].Engineering,2016,2(2):176-216.[YIN Y P,LI B,WANG W P,et al.Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J].Engineering,2016,2(2):176-216.(in Chinese)]
    [26]刘传正.深圳红坳弃土场滑坡灾难成因分析[J].中国地质灾害与防治学报,2016,27(1):1-5.[LIU C Z.Genetic mechanism of landslide tragedy happened in Hong ao dumping place in Shenzhen,China[J].The Chinese Journal of Geological Hazard and Control,2016,27(1):1-5.(in Chinese)]
    [27]PENG R,HOU Y,ZHAN L,et al.Back-analyses of landfill instability induced by high water level:Case study of shenzhen landfill[J].International journal of environmental research and public health,2016,13(1):126.
    [28]ZHAN L,ZHANG Z,CHEN Y,et al.The 2015 Shenzhen catastrophic landslide in a construction waste dump:Reconstitution of dump structure and failure mechanisms via geotechnical investigations[J].Engineering Geology,2018,doi.org/10.1016/j.enggeo.2018.02.019.
    [29]BENZ W.Smooth particle hydrodynamics:a review//The numerical modelling of nonlinear stellar pulsations.Springer Netherlands,1990:269-288.
    [30]HUANG Y,ZHU C.Simulation of flow slides in municipal solid waste dumps using a modified MPS method[J].Natural hazards,2014,74(2):491-508.
    [31]HUNGR O,EVANS S G.Rock avalanche runout prediction using a dynamic model[C]//Proceedings of the7th International Symposium on Landslides.Trondheim,Norway,1996:233-238.
    [32]YIN Y,CHENG Y,LIANG J,et al.Heavy-rainfallinduced catastrophic rockslide-debris flow at Sanxicun,Dujiangyan,after the Wenchuan Ms 8.0 earthquake[J].Landslides,2016,13(1):9-23.
    [33]XING A,YUAN X,XU Q,et al.Characteristics and numerical runout modelling of a catastrophic rock avalanche triggered by the Wenchuan earthquake in the Wenjia valley,Mianzhu,Sichuan,China[J].Landslides,2016:1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700