用户名: 密码: 验证码:
达里湖瓦氏雅罗鱼生殖洄游过程中能量代谢和消化酶活性的变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy metabolism and digestive enzyme activity regulation in Amur Ide(Leuciscus waleckii) during spawning migration from Dali Nor Lake to Gongger River
  • 作者:王瑞芳 ; 安晓萍 ; 齐景伟 ; 刘玉辉 ; 翁美其 ; 孟和平 ; 柳玉海 ; 罗旭光
  • 英文作者:WANG Ruifang;AN Xiaoping;QI Jingwei;LIU Yuhui;WENG Meiqi;MENG Heping;LIU Yuhai;LUO Xuguang;College of Animal Science, Inner Mongolia Agricultural University;Inner Mongolia Fishery Technical Extension Station;Dali Nor Lake Fishing Ground of Inner Mongolia;
  • 关键词:瓦氏雅罗鱼 ; 生殖洄游 ; 血糖 ; 糖原存储 ; 消化酶
  • 英文关键词:Leuciscus waleckii;;spawning migration;;serum glucose;;glycogen storage;;digestive enzyme
  • 中文刊名:ZSCK
  • 英文刊名:Journal of Fishery Sciences of China
  • 机构:内蒙古农业大学动物科学学院;内蒙古自治区水产技术推广站;内蒙古达里湖渔场;
  • 出版日期:2019-07-15
  • 出版单位:中国水产科学
  • 年:2019
  • 期:v.26
  • 基金:内蒙古自治区自然科学基金项目(2018BS03016);; 内蒙古自治区高等学校科学研究项目(NJZZ18045);; 内蒙古农业大学高层次人才引进项目(NDGCC2016-10)
  • 语种:中文;
  • 页:ZSCK201904009
  • 页数:10
  • CN:04
  • ISSN:11-3446/S
  • 分类号:86-95
摘要
为了解达里湖瓦氏雅罗鱼(Leuciscus waleckii Cyprinidae)生殖洄游过程中能量代谢和消化酶活性的变化,本研究对比了捕于达里湖和贡格尔河的瓦氏雅罗鱼血清生化参数、肝脏和肌肉组织中糖原含量、肝脏组织中转氨酶和己糖激酶活性以及肝脏和肠道组织中消化酶活性的差异;并利用实验生态学方法,研究达里湖中瓦氏雅罗鱼转入贡格尔河河水中24h后其血清生化参数的响应。研究结果显示,与达里湖中瓦氏雅罗鱼相比,洄游到贡格尔河中后雅罗鱼血清葡萄糖含量显著降低(P<0.05),胆固醇含量显著升高(P<0.05),总蛋白和甘油三酯含量无显著变化;肝糖原含量极显著升高(P<0.01),肌糖原含量无显著变化;肝脏组织中谷草转氨酶活性显著降低(P<0.05),谷丙转氨酶和己糖激酶活性无显著差异;肝脏和肠道组织中纤维素酶、胃蛋白酶、胰蛋白酶和淀粉酶活性均显著升高(P<0.05)。将达里湖中瓦氏雅罗鱼转入河水中24h后,其血清葡萄糖和总蛋白含量显著降低(P<0.05),而甘油三酯和胆固醇含量未见明显变化。本研究结果表明,达里湖瓦氏雅罗鱼洄游过程中以肝糖原的形式为其生殖活动储备能量;肝脏和肠道组织中消化酶活性的升高可提高鱼体对营养物质的消化吸收能力。
        Dali Nor lake is one of the four lakes in Inner Mongolia. It is a typical saline-alkaline lake with high concentrations of carbonate salts(alkalinity up to 60 mmol/L, pH 9.6, and salinity 6‰). Amur ide(Leuciscus waleckii) is one of the two existing fish in the Dali Nor lake with economic value. Amur ide inhabiting Dali Nor lake undertake spawning migration. To investigate the metabolic regulation mechanism of L. waleckii during spawning migration form Dali Nor lake to Gongger river, we measured serum biochemical parameters, glycogen storage in the hepatopancreas and muscle, and key metabolic and digestive enzyme activities in the hepatopancreas and intestinal tract in L. waleckii collected from Dali Nor lake and Gongger river. In addition, we studied serum biochemical parameters in L. waleckii during a 24 h transfer from Dali Nor Lake to Gongger River water.Compared to lake fish, river fish had significantly lower serum glucose concentrations and significantly elevated cholesterol concentrations. Serum protein and triglyceride concentration did not differ significantly between river and lake fish. Liver glycogen content of the river fish was found to be remarkably higher than that of the lake fish,while muscle glycogen content remained at the same level as the lake fish. Measured metabolic enzyme activities showed that glutamate transaminase(GOT) activity in the hepatopancreas significantly decreased in river fish,while there was no change in alanine aminotransferase(GPT) and hexokinase(HK) activities. It was noted that the activities of all measured digestive enzymes(pepsin, trypsin, amylase and cellulose) increased significantly in both in the liver and the intestinal tract in river fish compared to lake fish. During the 24 h lake-to-river water transfer, serum glucose and protein levels decreased significantly, while triglyceride and cholesterol concentrations did not change. It was concluded that during spawning migration from Dali Nor Lake to Gongger River, L.waleckii can maintain higher metabolic rates and store glycogen in liver in order to provide energy for their subsequent reproduction. The elevated digestive enzyme activities of river fish represent an improved digestibility coefficient, which provides more energy for their reproductive activity.
引文
[1]Doucett R R,Booth R K,Power G,et al.Effects of the spawning migration on the nutritional status of anadromous Atlantic salmon(Salmo salar):insights from stable-isotope analysis[J].Canadian Journal of Fisheries and Aquatic Sciences,1999,56(11):2172-2180.
    [2]Kiessling A,Lindahl-Kiessling K,Kiessling K H.Energy utilization and metabolism in spawning migrating Early Stuart sockeye salmon(Oncorhynchus nerka):the migratory paradox[J].Canadian Journal of Fisheries and Aquatic Sciences,2004,61(3):452-465.
    [3]Jonsson N,Jonsson B,Hansen L P.Changes in proximate composition and estimates of energetic costs during upstream migration and spawning in Atlantic salmon(Salmo salar)[J].Journal of Animal Ecology,1997,66(3):425-436.
    [4]Jonsson N,Jonsson B,Hansen L P.Energetic cost of spawning in male and female Atlantic salmon(Salmo salar L.)[J].Journal of Fish Biology,1991,39(5):739-744.
    [5]Wagner T,Congleton J L.Blood chemistry correlates of nutritional condition,tissue damage,and stress in migrating juvenile chinook salmon(Oncorhynchus tshawytscha)[J].Canadian Journal of Fisheries and Aquatic Sciences,2004,61(7):1066-1074.
    [6]Glebe B D,Leggett W C.Temporal,intra-population differences in energy allocation and use by American shad(Alosa sapidissima)during the spawning migration[J].Canadian Journal of Fisheries and Aquatic Sciences,1981,38(7):795-805.
    [7]Le Blanc P J,Gillis T E,Gerrits M F,et al.Metabolic organization of liver and somatic muscle of landlocked sea lamprey,Petromyzon marinus,during the spawning migration[J].Canadian Journal of Zoology,1995,73(5):916-923.
    [8]Xu Z L,Chen J J.Analysis of migratory route of Larimichthys crocea in the East China Sea and Yellow Sea[J].Journal of Fisheries of China,2011,35(3):429-437.[徐兆礼,陈佳杰.东黄海大黄鱼洄游路线的研究[J].水产学报,2011,35(3):429-437.]
    [9]Mommsen T P,French C J,Hochachka P W.Sites and patterns of protein and amino acid utilization during the spawning migration of salmon[J].Canadian Journal of Zoology,1980,58(10):1785-1799.
    [10]Ando S,Yamazaki F,Hatano M,et al.Deterioration of chum salmon(Oncorhynchus keta)muscle during spawning migration-III.Changes in protein composition and protease activity of juvenile chum salmon muscle upon treatment with sex steroids[J].Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1986,83(2):325-330.
    [11]Tian X L,Ren X W,Dong S L,et al.Studies on the specific activities of digestive enzymes of Cynoglossus semilaevis Gǜnther at different salinities and temperatures[J].Periodical of Ocean University of China,2008,38(6):895-901.[田相利,任晓伟,董双林,等.温度和盐度对半滑舌鳎幼鱼消化酶活性的影响[J].中国海洋大学学报,2008,38(6):895-901.]
    [12]Luo M Z,Guan R Z,Jin H.Effects of the salinity on the growth performance and digestive enzyme activities of Anguilla marmorata elver and A.bicolor pacifica elver[J].Acta Hydrobiologica Sinica,2015,39(4):653-660.[罗鸣钟,关瑞章,靳恒.盐度对花鳗鲡和太平洋双色鳗鲡幼鳗生长性能及消化酶活力的影响[J].水生生物学报,2015,39(4):653-660.]
    [13]Xu J,Li Q,Xu L M,et al.Gene expression changes leading extreme alkaline tolerance in Amur ide(Leuciscus waleckii)inhabiting soda lake[J].BMC Genomics,2013,14:682.
    [14]Chang Y M,Tang R,Dou X J,et al.Transcriptome and expression profiling analysis of Leuciscus waleckii:An exploration of the alkali-adapted mechanisms of a freshwater teleost[J].Molecular Biosystems,2014,10(3):491-504.
    [15]He Q,Chang Y M,Su B F,et al.Effects of high carbonate alkalinity water and high ammonia water on oxygen consumption and ammonia excretion in Leuciscus waleckii Dybowski[J].Journal of Biology,2016,33(6):48-51.[何强,常玉梅,苏宝锋,等.高碱度和高氨对达里湖瓦氏雅罗鱼耗氧率和排氨率的影响[J].生物学杂志,2016,33(6):48-51.]
    [16]Qi J W,An X P,Meng H P,et al.Utilization status of Leucisus waleckii(Dybowski)in Dali Lake and its rational exploitation[J].Journal of Hydroecology,2011,32(1):71-77.[齐景伟,安晓萍,孟和平,等.达里湖瓦氏雅罗鱼资源现状及合理利用探讨[J].水生态学杂志,2011,32(1):71-77.]
    [17]Yang Z B,Zhao Y L,Zhou Z L,et al.Effects of copper in water on distribution of copper and digestive enzymes activities in Eriocheir sinensis[J].Journal of Fisheries of China,2005,29(4):496-501.[杨志彪,赵云龙,周忠良,等.水体铜对中华绒螯蟹体内铜分布和消化酶活性的影响[J].水产学报,2005,29(4):496-501.]
    [18]Storebakken T,Hung S S O,Calvert C C,et al.Nutrient partitioning in rainbow trout at different feeding rates[J].Aquaculture,1990,96(2):191-203.
    [19]Sauer D M,Haider G.Enzyme activities in the plasma of rainbow trout,Salmo gairdneri Richardson;the effects of nutritional status and salinity[J].Journal of Fish Biology,1979,14(4):407-412.
    [20]Fletcher G L,Watts E G,King M J.Copper,zinc,and total protein levels in the plasma of sockeye salmon(Oncorhynchus nerka)during their spawning migration[J].Journal of the Fisheries Research Board of Canada,1975,32(1):78-82.
    [21]Soengas J L,Aldegunde M,Andres M D.Gradual transfer to seawater of rainbow trout:effects on liver carbohydrate metabolism[J].Journal of Fish Biology,1995,47(3):466-478.
    [22]Sangiao-Alvarellos S,Miguez J M,Soengas J L.Actions of growth hormone on carbohydrate metabolism and osmoregulation of rainbow trout(Oncorhynchus mykiss)[J].General and Comparative Endocrinology,2005,141(3):214-225.
    [23]Cao Y B,Chen X Q,Wang S,et al.Growth hormone and insulin-like growth factor of naked carp(Gymnocypris przewalskii)in Lake Qinghai:Expression in different water environments[J].General and Comparative Endocrinology,2009,161(3):400-406.
    [24]Wood C M,Du J,Rogers J,et al.Przewalski’s naked carp(Gymnocypris przewalskii):an endangered species taking a metabolic holiday in Lake Qinghai,China[J].Physiological and Biochemical Zoology,2007,80(1):59-77.
    [25]Chang V M,Idler D R.Biochemical studies on sockeye salmon during spawning migration:xii.liver glycogen[J].Canadian Journal of Biochemistry and Physiology,1960,38(6):553-556.
    [26]Abassi Z,Shaikh S A,Abbassi J.Serum cholesterol level during vitellogenesis of teleost fish Cyprinus carpio[J].Pakistan Journal of Zoology,2011,43(4):739-745.
    [27]Sheridan M A.Lipid dynamics in fish:aspects of absorption,transportation,deposition and mobilization[J].Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1988,90(4):679-690.
    [28]Vijayavel K,Balasubramanian M P.Fluctuations of biochemical constituents and marker enzymes as a consequence of naphthalene toxicity in the edible estuarine crab Scylla serrata[J].Ecotoxicology and Environmental Safety,2006,63(1):141-147.
    [29]Li E C.Physiological effects of ambient salinity on Litopenaeus vannamei and nutrient modulation[D].Shanghai:East China Normal University,2008.[李二超.盐度对凡纳滨对虾的生理影响及其营养调节[D].上海:华东师范大学,2008.]
    [30]Chang Y M,He Q,Sun Y C,et al.Changes in plasma free amino acid levels in Leuciscus waleckii exposed to different environmental alkalinity levels[J].Journal of Fishery Sciences of China,2016,23(1):117-124.[常玉梅,何强,孙言春,等.碳酸盐碱度胁迫下瓦式雅罗鱼血浆游离氨基酸水平的变化[J].中国水产科学,2016,23(1):117-124.]
    [31]Laiz-Carrión R,Sangiao-Alvarellos S,Guzmán J M,et al.Energy metabolism in fish tissues related to osmoregulation and cortisol action[J].Fish Physiology and Biochemistry,2002,27(3-4):179-188.
    [32]Fang Z H,Tian X L,Dong S L.The growth performance,osmotic physiology and carbohydrate metabolism activity of juvenile Cynoglossus semilaecis acclimated to low salinity water[J].Periodical of Ocean University of China,2016,46(8):19-27.[房子恒,田相利,董双林.低盐驯化对半滑舌鳎幼鱼生长、渗透生理及糖代谢酶活力影响的研究[J].中国海洋大学学报,2016,46(8):19-27.]
    [33]Yan M J,Li Z J,Xiong B X.Food intake,growth and feed utilization of puffer fish(Takifugu fasciatus)after different salinity pretreatments[J].Acta Hydrobiologica Sinica,2005,29(2):142-145.[严美姣,李钟杰,熊邦喜.不同盐度预处理后Ⅰ龄暗纹东方鲀的摄食、生长和饲料利用.水生生物学报,2005,29(2):142-145.]
    [34]Tian H J,Zhuang P,Zhang L Z,et al.Effects of water temperature on activities of digestive enzymes of juvenile Acipenser schrenckii[J].Journal of Fishery Sciences of China,2007,14(1):126-131.[田宏杰,庄平,章龙珍,等.水温对施氏鲟幼鱼消化酶活力的影响[J].中国水产科学,2007,14(1):126-131.]
    [35]Chiu Y N,Benitez L V.Studies on the carbohydrates in the digestive tract of the milkfish Chanos chanos[J].Marine Biology,1981,61(2-3):247-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700