用户名: 密码: 验证码:
铷云母矿资源的综合利用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comprehensive utilization of rubidium mica ore
  • 作者:邢鹏 ; 王成彦 ; 马保中 ; 陈永强
  • 英文作者:XING Peng;WANG Cheng-yan;MA Bao-zhong;CHEN Yong-qiang;School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing;
  • 关键词:铷云母矿 ; 酸浸 ; 溶剂萃取 ; ; 白炭黑
  • 英文关键词:rubidium mica;;acid leaching;;solvent extraction;;rubidium;;silica white
  • 中文刊名:BJKD
  • 英文刊名:Chinese Journal of Engineering
  • 机构:北京科技大学冶金与生态工程学院;
  • 出版日期:2019-04-09 13:41
  • 出版单位:工程科学学报
  • 年:2019
  • 期:v.41;No.300
  • 基金:国家自然科学基金资助项目(U1802253,51674026);; 国家重点研发计划资助项目(2018YFC1900304);; 北京市自然科学基金资助项目(2182040);; 中央高校基本科研业务费专项资金资助项目(230201606500018)
  • 语种:中文;
  • 页:BJKD201904004
  • 页数:7
  • CN:04
  • ISSN:10-1297/TF
  • 分类号:34-40
摘要
针对目前铷矿提取工艺污染严重、资源综合利用率低的现状,本文提出采用酸浸—溶剂萃取工艺提取铷云母矿中的铷.研究了浸出温度、硫酸浓度及浸出时间对铷浸出率的影响,并借助X射线衍射、扫描电镜、能谱分析等手段,研究了浸出过程中铷云母矿的物相转变.实验结果表明,铷云母矿酸浸的最佳条件为浸出温度250℃、H2SO4质量浓度200 g·L-1、浸出时间1. 5 h,在此条件下铷浸出率达85. 2%. X射线衍射图谱表明铷云母矿的主要矿物组成为石英、黑云母、白云母、正长石及钠长石.扫描电镜-能谱分析结果表明矿石中的铷主要以类质同象取代钾的位置分别存在于黑云母及白云母中.浸出过程中发生的主要反应为载铷云母的溶解.在萃取剂浓度1 mol·L-1、有机相与水相的体积比O/A=3∶1、萃取级数为3级条件下进行逆流萃取实验,萃余液中的铷质量浓度为0. 003 g·L-1,铷的萃取率达98%.在HCl浓度1 mol·L-1、相比O/A=4∶1、反萃级数为2级条件下反萃负载铷的有机相,铷反萃率达99%.以浸出渣为原料,采用碱熔—中和沉淀工艺制备出了白炭黑产品,实现了资源的综合利用.采用X射线衍射、红外光谱分析技术对白炭黑进行了表征,结果表明产品成分为水合二氧化硅,符合非晶态白炭黑的特征.化学定量分析结果表明白炭黑产品含Si O2质量分数91. 65%,所制备的白炭黑满足国家化工行业标准.
        In light of the serious environmental pollution caused by the conventional roasting processes and the corresponding low comprehensive utilization of rubidium resources,a novel acid leaching and solvent extraction process was developed to extract rubidium from rubidium mica ore. The effects of leaching temperature,sulfuric acid concentration,and time on the leaching of rubidium were investigated,and the phase transformations during the leaching were analyzed through X-ray diffraction( XRD),scanning electron microscope( SEM),and energy dispersive spectrometry( EDS). The experimental results show that the optimum conditions of acid leaching for rubidium mica ore are as follows: leaching temperature of 250 ℃,H2 SO4 concentration of 200 g·L-1,and leaching time of 1 h. Under these conditions,the leaching ratio of rubidium increases up to 85. 2%. The XRD patterns of the raw ore indicate that quartz,biotite,muscovite,orthoclase,and albite are the major phases. Further SEM-EDS analysis shows that the Rb is scatted in biotite and muscovite in the form of isomorphism. Furthermore,the main reaction in the leaching process was the dissolution of the rubidium-rich micas. The countercurrent extraction experiment was conducted under the following conditions: extractant concentration of 1 mol·L-1,phase ratio( O/A) of 3∶ 1,and extraction stage 3. The concentration of rubidium in the raffinate was 0. 003 g·L-1,and the extraction ratio of rubidium was 98%. After performing the 2-stage countercurrent stripping with 1 mol·L-1 HCl at a phase ratio( O/A) of 4∶ 1,the stripping ratio of rubidium reached 99%. Silica white was prepared via alkali melting leaching residue and neutralization precipitation; thus,the comprehensive utilization of rubidium resource was achieved. XRD and Fourier transform infrared spectroscopy were used to characterize the silica white product. The corresponding results show that the product comprises hydrated silica,thus meeting the characteristics of the amorphous silica white. Finally,the chemical quantitative analysis results show that the silica white product comprises 91. 65% of Si O2,which is in accordance with the national chemical industry standard.
引文
[1] Niu H X. Research and development of extraction metallurgy and application of rubidium and its compounds. Chin J Rare Met,2006,30(4):523(牛慧贤.铷及其化合物的制备技术研究与应用展望.稀有金属,2006,30(4):523)
    [2] Sun Y,Wang R J,Qi F,et al. The global status of rubidium resource and suggestions on its development and utilization in China.China Min Mag,2013,22(9):11(孙艳,王瑞江,亓锋,等.世界铷资源现状及我国铷开发利用建议.中国矿业,2013,22(9):11)
    [3] Hosseini M,Sparkes B M,Campbell G,et al. High efficiency coherent optical memory with warm rubidium vapour. Nature Commun,2011,2:174-1
    [4] Saliba M,Matsui T,Domanski K,et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science,2016,354(6309):206
    [5] Eremyashev V E,Zherebtsov D A,Osipova L M,et al. Thermal study of melting,transition and crystallization of rubidium and cesium borosilicate glasses. Ceram Int,2016,42(16):18368
    [6] Naidu G,Loganathan P,Jeong S,et al. Rubidium extraction using an organic polymer encapsulated potassium copper hexacyanoferrate sorbent. Chem Eng J,2016,306:31
    [7] Gao Z G,Cao Y H,Wang W,et al. Study on leaching process of rubidium ore. Nonferrous Met(Extract Metall),2014(4):26(高照国,曹耀华,王威,等.某铷矿浸出工艺研究.有色金属(冶炼部分),2014(4):26)
    [8] Shan Z Q,Shu X Q,Feng J F,et al. Modified calcination conditions of rare alkali metal Rb-containing muscovite(KAl2[Al Si3O10](OH)2). Rare Met,2013,32(6):632
    [9] Zheng S L,Li P,Tian L,et al. A chlorination roasting process to extract rubidium from distinctive kaolin ore with alternative chlorinating reagent. Int J Miner Process,2016,157:21
    [10] Zhou L B,Yuan T C,Li R D,et al. Extraction of rubidium from kaolin clay waste:Process study. Hydrometallurgy,2015,158:61
    [11] Kalinowski B E,Schweda P. Kinetics of muscovite,phlogopite,and biotite dissolution and alteration at pH 1-4,room temperature. Geochim Cosmochim Acta,1996,60(3):367
    [12] Taylor A S,Blum J D,Lasaga A C,et al. Kinetics of dissolution and Sr release during biotite and phlogopite weathering. Geochim Cosmochim Acta,2000,64(7):1191
    [13] Malmstrom M,Banwart S. Biotite dissolution at 25℃:the p H dependence of dissolution rate and stoichiometry. Geochim Cosmochim Acta,1997,61(14):2779
    [14] Sun D S,Zhang X Z,Sun J Q. Experimental research on iron removal from potassium feldspar by acid leaching. Min Metall Eng,2010,30(3):43(孙德四,张贤珍,孙剑奇.酸浸除铁提纯钾长石粉的工艺试验研究.矿冶工程,2010,30(3):43)
    [15] Qiu Y S,Li C Z,Chen L,et al. Status of extraction technique in recovering rubidium and cesium. Ur Min Metall,2014,33(4):231(仇月双,李存增,陈亮,等.溶液中铷、铯提取技术的研究现状.铀矿冶,2014,33(4):231)
    [16] Li S Y,Qian H Y. Preparation methods and application actuality of silica white. Inorg Chem Ind,2008,40(1):8(李素英,钱海燕.白炭黑的制备与应用现状.无机盐工业,2008,40(1):8)
    [17] Liu Y,Zhang X,Li Z Y,et al. Study on the optimum technological conditions of preparing silica white from laterite nickel ore.Met Mine,2008(9):54(刘元,张霞,李在元,等.红土镍矿为原料制备白炭黑的最佳工艺研究.金属矿山,2008(9):54)
    [18] Ban W J,Zhou X P,Ke Y L. Research on short process extraction of silica from fly ash. Clean Coal Technol,2011,17(6):99(班卫静,周霞萍,柯一龙.粉煤灰短流程制取白炭黑的研究.洁净煤技术,2011,17(6):99)
    [19] Shen Q F. Study on the preparation of silica white from copper tailings. Conserv Utiliz Miner Resour,2012(5):45(沈青峰.铜尾矿制备白炭黑技术研究.矿产保护与利用,2012(5):45)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700