用户名: 密码: 验证码:
南京市大气PM_(2.5)时空分布特征与潜在源区贡献分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial-temporal Characteristics of Atmospheric PM_(2.5) and Contribution Analysis of Potential Source Areas for Nanjing
  • 作者:高月 ; 孙荣国 ; 陈卓 ; 臧庆大
  • 英文作者:GAO Yue;SUN Rongguo;CHEN Zhuo;ZANG Qingda;School of Chemistry and Material,Guizhou Normal University;State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences;
  • 关键词:PM_(2.5) ; 时空特征 ; 轨迹聚类 ; 潜在源贡献因子 ; 浓度权重轨迹分析
  • 英文关键词:PM_(2.5);;spatial-temporal;;trajectory clustering;;PSCF;;CWT
  • 中文刊名:DZDQ
  • 英文刊名:Earth and Environment
  • 机构:贵州师范大学化学与材料科学学院;中国科学院地球化学研究所环境地球化学国家重点实验室;
  • 出版日期:2019-03-18 09:41
  • 出版单位:地球与环境
  • 年:2019
  • 期:v.47;No.329
  • 基金:国家自然科学基金项目(21767007);; 贵州省科技厅(黔科合基础[2018]1111);; 贵州师范大学博士科研启动基金项目;贵州师范大学“省级大学生创新创业训练计划”项目
  • 语种:中文;
  • 页:DZDQ201903005
  • 页数:7
  • CN:03
  • ISSN:52-1139/P
  • 分类号:37-43
摘要
对2017年南京市区7个自动空气质量监测点的PM_(2.5)质量浓度ρ(PM_(2.5))数据进行分析,采用克里金(Kringing)空间插值法、气流运动轨迹聚类、潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)探讨了四季大气中ρ(PM_(2.5))的时空分布特征和潜在来源。结果显示,四季大气中ρ(PM_(2.5))均值由高到低依次为冬季(65. 54μg/m~3)、春季(41. 70μg/m~3)、秋季(35. 18μg/m~3)和夏季(23. 56μg/m~3),秦淮区四季大气中ρ(PM_(2.5))均最高。春季南京大气中ρ(PM_(2.5))易受黄海海岸和北方大陆性输送气流的影响,来自黄海方向的气流轨迹2贡献比例达51. 65%,对应的ρ(PM_(2.5))为50. 91μg/m~3;夏季南京大气中ρ(PM_(2.5))主要受江苏、东部海洋和南部沿海城市输送气流的影响,其中源自江苏的气流轨迹1对南京大气PM_(2.5)贡献比例最大(33. 64%),气流轨迹对应的ρ(PM_(2.5))为35μg/m~3;秋季南京大气中ρ(PM_(2.5))易受短距离的偏北气流影响,来自山西南部,河南中部、安徽中部的气流轨迹5对应的ρ(PM_(2.5))最高,出现概率(21. 11%)和贡献比例(27. 81%)均较高;冬季南京大气中ρ(PM_(2.5))主要受北方大陆性输送气流影响,来自俄罗斯、蒙古国东部、河北北部、北京、天津、山东中部的长距离气流轨迹4对应的ρ(PM_(2.5))最高,达109. 8μg/m~3,其贡献比例为26. 86%。PSCF和CWT分析发现,安徽、山东、浙江与江苏交界和黄海海岸是影响南京市空气质量的主要潜在源区,此外,湖北、北京、天津以及渤海海岸也是南京大气PM_(2.5)的潜在源区。
        Data of PM_(2.5) from 7 automatic air quality monitoring stations of Nanjing in 2017 were discussed to examine the temporal and spatial characteristic of PM_(2.5) and it's sources. The analyzed methods include Kriging spatial interpolation method,Trajectory clustering of air flows,Potential Source Contribution Function( PSCF),and Concentration-Weighted Trajectory( CWT). The results indicated that the highest PM_(2.5) concentrations ρ( PM_(2.5)) was observed in winter( 65. 54 μg/m~3),followed by spring( 41. 70 μg/m~3),autumn( 35. 18 μg/m~3),and summer( 23. 56 μg/m~3). All the highest ρ( PM_(2.5)) were peaked in Qinhuai district in four seasons. In spring,the atmospheric PM_(2.5) was easily affected by the coastal and northern continental transport airflow in Nanjing. The contribution of airflow trajectory 2 was up to 51. 65% from the Yellow sea,and the ρ( PM_(2.5)) was 50. 91μg/m~3. In summer,the atmospheric PM_(2.5) was mainly affected by the transport airflow in Jiangsu province,the Eastern seas and southern coastal cities,in which the contribution of airflow trajectory 1 originated from Jiangsu province was the largest contributor to atmospheric PM_(2.5)( 33. 64%) in Nanjing,and the corresponding airflow trajectory ρ( PM_(2.5)) was 35 μg/m~3. In autumn,the atmospheric PM_(2.5) was susceptible to short-distance northerly airflow,and the airflow trajectory 5 corresponding to the south of Shanxi,central in Henan and central in Anhui,which was the highestρ( PM_(2.5)),with a higher occurrence probability( 21. 11%) and contribution proportion( 27. 81%). The atmospheric PM_(2.5) was mainly affected by the northern continental transport airflow in winter,which was the highest ρ( PM_(2.5)) corresponding to the long-distance airflow trajectory 4 that from Russia,eastern in Mongolia,northern in Hebei,Beijing,Tianjin and central in Shandong province,up to109. 80 μg/m~3,with the contribution rate of 26. 86%. PSCF and CWT analysis showed that Anhui,Shandong,the Zhejiang province borders Jiangsu province and the Yellow sea coast were the main potential source regions,their affected the air quality in Nanjing,the Hubei province,Beijing,Tianjin and the coasts of the Yellow seas and the Bohai seas also made contributions to the air pollution in Nanjing.
引文
[1]Intergovernmental Panel on Climate Change(IPCC).Climatechange 2007-The physical science basis[M].UK:CambridgeUniversity Press,2007.
    [2]程念亮,李云婷,孟凡,等.我国PM2.5污染现状及来源解析研究[J].安徽农业科学学,2014,49(15):4721-4724.
    [3]任丽红,周志恩,赵雪艳,等.重庆主城区大气PM10及PM2.5来源解析[J].环境科学研究,2014,27(12):1387-1394.
    [4]Martínez Cinco M,Santos Guzmán J,Mejía Velázquez G.Source apportionment of PM2.5for supporting control strategies in the Monterrey Metropolitan Area,Mexico[J].Journal of the Air&Waste Management Association,2016,3(6):1763-1776.
    [5]林瑜,叶芝祥,杨怀金,等.成都市西南郊区春季大气PM2.5的污染水平及来源解析[J].环境科学,2016,37(5):1629-1638.
    [6]Khare P,Baruah B P.Elemental characterization and source identification of PM2.5,using multivariate analysis at the sub-urban site of NorthEast India[J].Atmospheric Research,2010(98):148-162.
    [7]孟琛琛,王丽涛,苏捷,等.邯郸市PM2.5化学组成特征及来源解析[J].环境科学与技术,2016,39(2):57-64.
    [8]任传斌,吴立新,张媛媛,等.北京城区PM2.5输送途径与潜在源区贡献的四季差异分析[J].中国环境科学,2016,36(9):2591-2598.
    [9]Burkart K,Canarion K,Burkartk,et al.Interactive short-term effects of equivalent temperature and air pollution on humanmortality in Berlin and Lisbon[J].Environmental Pollution,2013,183:54-63.
    [10]蒋永成,赵天良,王宏,等.福州市PM2.5污染过程中大气边界层和区域传输研究[J].中国环境科学,2015,35(2):347-355.
    [11]臧星华,鲁垠涛,姚宏,等.中国主要大气污染物的时空分布特征研究[J].生态环境学报,2015,24(8):1322-1329.
    [12]路云霞,刘海滨,于忠华,等.南京市环境空气污染特征与治理对策研究[J].环境科学与管理,2013,38(4):79-82.
    [13]周瑶瑶,马嫣,郑军,等.南京北郊冬季霾天PM2.5水溶性离子的污染特征与消光作用研究[J].环境科学,2015,36(6):1926-1934.
    [14]杨军,牛忠清,石春娥,等.南京冬季雾霾过程中气溶胶粒子的微物理特征[J].环境科学,2010,31(7):1425-1431.
    [15]王博妮,濮梅娟,陈鹏,等.南京城区冬季大气污染特征[J].环境科学研究,2017,30(9):1335-1345.
    [16]陈善莉,韩珣,赵云卿,等.基于硫碳同位素研究南京北郊冬季霾事件中PM2.5来源[J].中国环境监测,2018,34(4):60-66.
    [17]姜迪,李聪.南京市区PM2.5扩散与气象条件的关系[J].环境监测管理与技术,2016,28(1):36-40.
    [18]刘春蕾,谢放尖,杨峰,等.2014-2016年南京市空气质量现状及对策研究[J].中国环境管理干部学院学报,2017,27(3):90-93.
    [19]Sirois A,Bottenhein J W.Use of backward trajectories to interpret the 5-year record of PAN and O3ambient air concentrations at Kejimkujik National Park,Nova Scotia[J].Journal of Geophysical Research,1995,100(D2):2867-2881.
    [20]王爱平,朱彬,银燕,等.黄山顶夏季气溶胶数浓度特征及其输送潜在源区[J].中国环境科学,2014,34(4):852-861.
    [21]Seibert P,Kromp-Kolb H,Baltensperger U,et al.Trajectoryanalysis of aerosol measurements at high alpine sites[J].Transport and Transformation of Pollutants in the Troposphere,1994:689-693.
    [22]丁卉,余志,徐伟嘉,等.3种区域空气质量空间插值方法对比研究[J].安全与环境学报,2016,16(3):306-315.
    [23]环境保护部,国家质量监督检验检疫总局.GB 3095-2012环境空气质量标准[S].北京:中国环境科学出版社,2012:1-12.
    [24]赵晨曦,王玉杰,王云琦,等.细颗粒物(PM2.5)与植被关系的研究综述[J].生态学杂志,2013,32:2013-2210.
    [25]Mc Donald A G,Bealey W J,Fowler D,et al.Quantifying the effect of urban tree planting on concentrations and depositions of PM10in two UKconurbations[J].Atmospheric Environment,2007,41(38):8455-8467.
    [26]Huang C,Chen C H,Li L,et al.Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region,China[J].Atmospheric Chemistry&Physics,2011,11(9):4105-4120.
    [27]杜祯宇.北京市水溶性有机碳来源与光吸收特征研究[D].北京:清华大学,2014.
    [28]Yang H,Yu J Z,Ho S S H,et al.The chemical composition of inorganic and carbonaceous materials in PM2.5,in Nanjing,China[J].Atmospheric Environment,2005,39(20):3735-3749.
    [29]Neff J C,Holland E A,Dentener F J,et al.The origin,composition and rates of organic nitrogen deposition:A missing piece of the nitrogen cycle?[J].Biogeochemistry,2002,57-58(1):99-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700