用户名: 密码: 验证码:
煤粉粒径对突出瓦斯-煤粉动力特征的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of coal powder particle sizes on dynamic characteristics of coal and gas outburst
  • 作者:王凯 ; 王亮 ; 杜锋 ; 张翔 ; 娄振 ; 辛程鹏 ; 崔心源
  • 英文作者:WANG Kai;WANG Liang;DU Feng;ZHANG Xiang;LOU Zhen;XIN Chengpeng;CUI Xinyuan;School of Emergency Management and Safety Engineering,China University of Mining & Technology(Beijing);Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources,China University of Mining & Technology(Beijing);State Key Laboratory of Coal Resources and Mine Safety,China University of Mining & Technology(Beijing);Department of Civil Engineering and Engineering Mechanics,Columbia University;School of Mining Engineering,Guizhou University of Engineering Science;
  • 关键词:煤与瓦斯突出 ; 两相流 ; 冲击动力 ; 纹影系统
  • 英文关键词:coal and gas outburst;;two-phase flow;;dynamics of impact;;schlieren system
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)应急管理与安全工程学院;中国矿业大学(北京)共伴生能源精准开采北京市重点实验室;中国矿业大学(北京)煤炭资源与安全开采国家重点实验室;哥伦比亚大学土木工程力学系;贵州工程应用技术学院矿业工程学院;
  • 出版日期:2019-05-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.296
  • 基金:国家重点研发计划资助项目(2016YFC0600708);; 国家自然科学基金资助项目(51874314,51774292)
  • 语种:中文;
  • 页:MTXB201905009
  • 页数:9
  • CN:05
  • ISSN:11-2190/TD
  • 分类号:93-101
摘要
为进一步研究煤与瓦斯突出机理以及突出煤粉粒径对突出瓦斯-煤粉动力特征影响机制,研制了突出粉煤-瓦斯两相流模拟试验系统。设置的管内安装传感器可用于同时测量突出气体冲击力以及运动煤粉对传感器的打击。煤粉在试验巷道内的动态传播特征可由传感器受到的打击情况进行分析。另外,针对目前纹影仪无法观察圆形管道内流场的问题,从纹影效果失效的原理出发,设计了一种用于观察圆形管道内流场的纹影系统直接研究突出激波波阵面的传播。利用试验系统进行4种煤粉粒径的突出试验,重点观测了突出气流冲击力、激波波阵面传播、煤粉冲击等参数。研究结果表明:气流冲击波速度远大于煤粉运动速度,在试验巷道中的突出气流冲击波在时间上会先于煤粉到达试验巷道的任何位置,气流冲击波到达传感器之后压力会在极短的时间内达到最大值,峰值压力能够保持0. 01 s左右。气体冲击力随着煤粉粒径目数的增加而增加,试验中4种粒径下气体冲击力平均依次增加10. 9%,11. 4%,7. 6%。气体冲击力在巷道内传播先增强后衰减,粒径80~200目情况下,2. 27,4. 27,6. 27和8. 27 m处传感器冲击波强度依次增强13. 6%、衰减13. 4%、衰减20. 6%。随着距离的增加煤粉对传感器的打击力呈明显的减弱趋势。煤粉运动速度随着煤粉粒径目数的增加而增加,试验中4种粒径下,试验巷道内煤粉平均速度分别为34. 4,37. 3,39. 1,41. 7 m平均速度依次增加31. 4%、减小12. 2%、减小13. 1%。纹影系统可观测到突出激波波阵面,激波波阵面垂直于试验管道轴线向突出方向高速运动。纹影计算得到波阵面的传播速度与理论间接计算值具有很好的一致性。
        In order to further study the mechanism of coal and gas outburst and the mechanism of the influence of coal powder particle sizes on the dynamic characteristics of outburst gas and coal,a coal and gas outburst two-phase flow simulation test system is developed. The pressure sensors installed in the test roadways have the ability to measure the impact of the protruding gas and the impact of the moving coal powder on the sensors. In addition,considering the principle why schlieren effect fails in current schlieren system when observing the flow fields in the circular pipe,an improved schlieren system to observe the flow field in a circular pipeline is designed which greatly helps the research on the propagation of the shock wave front. The test system is used to carry out the outburst experiments of four kinds of pulverized coal particle sizes,and the parameters such as the airflow impact force,the shock wave front propagation,and the pulverized coal impact are mainly observed. The results show that the velocity of the airflow shock wave is much larger than that of the coal powders. In the test roadways,the airflow shock wave arrives at any position of the test roadways ahead of the coal powders;the pressure will reach the maximum in an extremely short time after the airflow shock wave reaches the sensors. The peak pressure could be maintained for about 0.01 s. The airflow impact force increases with the increase of the particle size of the pulverized coal. The gas impact force of the four selected particle sizes increases by 10.9%,11.4% and 7.6%. The increase of void ratio is not the main reason for the increase of airflow impact. The increase of gas analysis speed caused by the increase of specific surface area is the main reason for the increase of airflow impact. The airflow impact is enhanced at first and then attenuated in the roadways,and for the coal powders size of 80-200 mesh,in the position of 2.27,4.27,6.27 and 8.27 m,the shock wave force on the sensor is increased by 13.6%,attenuated by 13.4%,and attenuated by 20.6%. The reflection and re-reflection of the shock wave are normal scenes of the shock waves in the non-uniform propagation paths,which is the case of both coal mine airways and the test experiment. As the distance of the sensors increases,the impacts of the coal powders on the sensors are significantly weakened. The speed of the coal powders increases with the increase of coal powders meshes. The average coal powder velocity in the four test roadways are 34.4,37.3,39.1 and 41.7 m der speed is accelerated and then decelerated in the roadways,and for the coal powder size of 80-200 mesh,the coal the average coal powder speed increased by 31.4%,12.2% and 13.1% in the four roadways. Both the airflow impact and the coal powder movement speed have a law of increasing at first and then decreasing,but there is no direct causal relationship between them. The schlieren system observes the prominent shock wave front,which is perpendicular to the roadway axis and moves at high speed. The propagation velocity of the wavefront calculated by schlieren system is consistent with theoretical calculation. The airflow impact denotes the stagnation pressure by the shock wave forefront to the sensor facing instantaneously,while the average speed of coal powders in the roadways indicates the velocity of the particle determined by air flow and resistance within a certain period of time. The gas impact arrival sensor instantaneously produces a stagnation pressure that represents only the strength of the shock wave front at the forefront of the impinging airflow. The average velocity of pulverized coal in the pipeline indicates the velocity of pulverized coal determined by gas power and other resistance for a certain period of time.
引文
[1]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [2]苗法田,孙东玲,胡千庭.煤与瓦斯突出冲击波的形成机理[J].煤炭学报,2013,38(3):367-372.MIAO Fatian,SUN Dongling,HU Qianting.The formation mechanism of shock waves in the coal and gas outburst process[J].Journal of China Coal Society,2013,38(3):367-372.
    [3]胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用机理[J].煤炭学报,2008,33(12):1368-1372.HU Qianting,ZHOU Shining,ZHOU Xinquan.Mechanical mechanism of coal and gas outburst process[J].Journal of China Coal Society,2008,33(12):1368-1372.
    [4]关维娟,张国枢,赵志根,等.煤与瓦斯突出多指标综合辨识与实时预警研究[J].采矿与安全工程学报,2013,30(6):922-929.GUAN Weijuan,ZHANG Guoshu,ZHAO Zhigen,et al.Multi-index comprehensive identification and real-time warning of coal and gas outburst[J].Journal of Mining&Safety Engineering,2013,30(6):922-929.
    [6]AN Fenghua,YUAN Yu,CHEN Xiangjun,et al.Expansion energy of coal gas for the initiation of coal and gas outbursts[J].Fuel,2019,235:551-557.
    [7]CAO Zuoyong,HE Xueqiu,WANG Enyuan,et al.Protection scope and gas extraction of the low-protective layer in a thin coal seam:Lessons from the Dahe coalfield,China[J].Geosciences Journal,2018,22(3):487-499.
    [8]WANG Jilin,LI Ming,XU Shaochun,et al.Simulation of ground stress field and advanced prediction of gas outburst risks in the non-mining area of Xinjing Mine,China[J].Energies,2018,11:12855.
    [9]鲜学福,辜敏,李晓红,等.煤与瓦斯突出的激发和发生条件[J].岩土力学,2009,20(3):577-581.XIAN Xuefu,GU Min,LI Xiaohong,et al.Excitation and occurrence conditions for coal and gas outburst[J].Rock and Soil Mechanics,2009,20(3):577-581.
    [10]许江,刘东,尹光志,等.非均布荷载条件下煤与瓦斯突出模拟实验[J].煤炭学报,2012,37(5):836-842.XU Jiang,LIU Dong,YIN Guangzhi,et al.Simulation experiment of coal and gas outburst under non-uniform load[J].Journal of China Coal Society,2012,37(5):836-842.
    [11]王汉鹏,张庆贺,袁亮,等.基于CSIRO模型的煤与瓦斯突出模拟系统与试验应用[J].岩石力学与工程学报,2015,34(11):2301-2308.WANG Hanpeng,ZHANG Qinghe,YUAN Liang,et al.Coal and gas outburst simulation system based on CSIRO model[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2301-2308.
    [12]王刚,程卫民,张清涛,等.石门揭煤突出模拟实验台的设计与应用[J].岩土力学,2013,34(4):1202-1210.WANG Gang,CHENG Weimin,ZHANG Qingtao,et al.Design of simulation experiment and its application system of outburst in uncovering coal seam in cross-cut[J].Rock and Soil Mechanics,2013,34(4):1202-1210.
    [13]许江,刘东,彭守建,等.不同突出口径条件下煤与瓦斯突出模拟试验研究[J].煤炭学报,2013,38(1):9-14.XU Jiang,LIU Dong,PENG Shoujian,et al.Coal and gas outburst analogous test under the different diameter of exposed coal seam surface[J].Journal of China Coal Society,2013,38(1):9-14.
    [14]ZHAO Bo,WEN Guangcai,SUN Haitao,et al.Similarity criteria and coal-like material in coal and gas outburst physical simulation[J].International Journal of Coal Science&Technology,2018,5(2):167-178.
    [15]XUE Sheng,YUAN Liang,WANG Junfeng,et al.A coupled DEMand LBM model for simulation of outbursts of coal and gas[J].International Journal of Coal Science&Technology,2015,1(2):22-29.
    [16]JIN Kan,CHENG Yuanping,REN Ting,et al.Experimental investigation on the formation and transport mechanism of outburst coal-gas flow:Implications for the role of gas desorption in the development stage of outburst[J].International Journal of Coal Geology,2018,194:45-58.
    [17]孙东玲,曹偈,熊云威,等.突出过程中煤-瓦斯两相流运移规律的实验研究[J].矿业安全与环保,2017,44(2):26-30.SUN Dongling,CAO Jie,XIONG Yunwei,et al.Experimental study on migration rule of coal-gas flow in process of outburst[J].Mining Safety&Environmental Protection,2017,44(2):26-30.
    [18]曹偈,孙海涛,戴林超,等.煤与瓦斯突出动力效应的模拟研究[J].中国矿业大学学报,2018,47(1):113-120,154.CAO Jie,SUN Haitao,DAI Linchao,et al.Simulation research on dynamic effect of coal and gas outburst[J].Journal of China University of Mining&Technology,2018,47(1):113-120,154.
    [19]TORIKAI Hiroyuki,SOGA Yuki,ITO Akihiko.Schlieren visualization of blast extinguishment with laser-induced breakdown[J].Proceedings of The Combustion Institute,2017,36(2):3297-3304.
    [20]CURTIS Matthew,KEELOR Joel D,JONES Christina M,et al.Schlieren visualization of fluid dynamics effects in direct analysis in real time mass spectrometry[J].Rapid Communications in Mass SPectrometry,2015,29(5):431-439.
    [21]HIRSCH Damian,GHARIB Morteza.Schlieren visualization and analysis of sweeping jet actuator dynamics[J].AIAA Journal,2018,56(8):2947-2960.
    [22]王凯,王亮,周爱桃,等.一种用于观察圆形管道内流场的纹影系统[P].中国专利:201810480092,2018-11-02.
    [23]陈强.激波管理论和实验技术[M].合肥:中国科学技术大学出版社,1979.
    [24]李进平,冯珩,姜宗林,等.爆轰驱动激波管缝合激波马赫数计算[J].空气动力学学报,2008,26(3):291-296.LI Jinping,FENG Heng,JIANG Zonglin,et al.Numerical computation on the tailored shock Mach numbers for a hydrogen oxygen detonation shock tube[J].Acta Aerodynamica Sinica,2008,26(3):291-296.
    [25]张科.复杂稠密气固两相流动的CFD-DEM模拟研究[D].杭州:浙江大学,2012.
    [26]陈浮,权晓波,宋彦萍.空气动力学基础[M].哈尔滨:哈尔滨工业大学出版社,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700