用户名: 密码: 验证码:
木质素加固黄土的工程性能试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study of engineering properties of loess reinforced by lignosulfonate
  • 作者:贺智强 ; 樊恒辉 ; 王军强 ; 刘刚 ; 王中妮 ; 余佳辉
  • 英文作者:HE Zhi-qiang;FAN Heng-hui;WANG Jun-qiang;LIU Gang;WANG Zhong-ni;YU Jia-hui;College of Water Conservancy and Architectural Engineering,Northwest A&F University;The First Company of China Eighth Engineering Bureau Ltd.;Jiangsu Institute of Architectural Technology;
  • 关键词:黄土 ; 木质素磺酸盐 ; 固化土性能 ; 加固机制
  • 英文关键词:loess;;lignosulfonate;;properties of stabilized soil;;stabilization mechanism
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:西北农林科技大学水利与建筑工程学院;中建八局第一建设有限公司;江苏建筑职业技术学院;
  • 出版日期:2017-03-10
  • 出版单位:岩土力学
  • 年:2017
  • 期:v.38;No.272
  • 基金:陕西省科技统筹创新工程计划项目(No.2013KTDZ03-03-01);; “十二五”国家科技支撑计划项目(No.2011BAD31B05-01-02)~~
  • 语种:中文;
  • 页:YTLX201703015
  • 页数:9
  • CN:03
  • ISSN:42-1199/O3
  • 分类号:120-128
摘要
黄土的水稳性较差,遇水容易产生崩解破坏,可造成黄土地区建筑物失稳。采用无侧限抗压强度试验、湿化崩解试验、单轴拉伸试验、三轴压缩试验和渗透试验,对木质素磺酸盐固化黄土的工程性质进行试验研究,探讨木质素磺酸盐加固黄土的可行性。试验结果表明,木质素磺酸钙可以改善黄土的工程性能,而木质素磺酸钠则相反;随着木质素磺酸钙掺量的增加,固化土的抗压和抗拉强度先增加后降低;含水率越小,密度越大,则固化土的强度越大;随着养护龄期的增长,固化土的强度先增加,而后趋于稳定。黄土在掺入木质素磺酸钙后,黄土的崩解特性显著改善,在掺量为1.0%和养护龄期为7 d时,几乎不发生崩解。木质素磺酸钙掺入土体后,渗透性降低。研究表明,木质素磺酸钙可显著改善黄土的工程性能。在工程应用中,建议在黄土中掺加1.0%的木质素磺酸钙,养护7 d。结合扫描电子显微镜观察,进一步分析木质素磺酸钙对土体工程性能产生影响的作用机制。木质素磺酸钙加固黄土的机制主要在于胶结土颗粒与填充孔隙两部分。
        Loess has poor water stability. It will disintegrate, when encounters water, and cause instability of the building foundations in loess area. The application of lignosulfonate for loess reinforcement and related engineering properties are evaluated by experimental program including unconfined compressive strength test, disintegration test, uniaxial tension test, triaxial compression test and permeability test. The test results indicate that calcium lignosulfonate improves engineering properties of loess rather than sodium lignosulfonate. Compression and tensile strength of the stabilized soil firstly increase and then decrease as the content of calcium lignosulfonate increases. Less moisture content generates greater the density and greater strength of the solidified soil. The strength of strengthened soil increases firstly and then stabilizes as the growth of curing age. Calcium lignosulfonate presents favorable reduction on loess disintegration and penetrability. The research concludes that calcium lignosulfonate can significantly improve the engineering properties of loess. The suitable addition amount of calcium lignosulfonate should be 1.0% and the curing age should be 7 days. The scanning electron microscope analysis assists the further discussion on two mechanisms for the improvement of engineering characteristics of loess by calcium lignosulfonate: soil particles cementing and pore filling.
引文
[1]朱莉,罗学刚.木质素磺酸钠脱磺及应用性能研究[J].林产化学与工业,2008,28(1):67-72.ZHU Li,LUO Xue-gang.Applied study on high-effect desulfonation of sodium lignosulfonate[J].Chemistry and Industry of Forest Products,2008,28(1):67-72.
    [2]蒋挺大.木质素[M].北京:化学工业出版社,2008.JIANG Ting-da.Lignin[M].Beijing:Chemical Industry Press,2008.
    [3]CEYLAN H,KIM S,GOPALAKRISHNAN K.Sustainable utilization of bio-fuel co-product in roadbed stabilization[J].Sustainable Bioenergy and Bioproducts,2012:117-129.
    [4]CEYLAN H,GOPALAKRISHNAN K,KIM S.Soil stabilization with bioenergy coproduct[J].Journal of the Transportation Research Board,2010,2186:130-137.
    [5]KIM S,GOPALAKRISHNAN K,CEYLAN H.Moisture susceptibility of subgrade soils stabilized by lignin-based renewable energy coproduct[J].Journal of Transportation Engineering,ASCE,2012,138(11):1283-1290.
    [6]TINGLE J S,SANTONI R L.Stabilization of clay soils with nontraditional additives[J].Transportation Research Record,2003,1819(1):72-84.
    [7]INDRARATNA B,MUTTUVEL T,KHABBAZ H.Modelling the erosion rate of chemically stabilized soil incorporating tensile force-deformation characteristics[J].Canadian Geotechnical Journal,2009,46(1):57-68.
    [8]INDRARATNA B,MUTTUVEL M A A,VINOD J S.Chemical and mineralogical behaviour of lignosulfonate treated soils[J].Geo Congress,ASCE,2012:1146-1155.
    [9]张涛,蔡国军,刘松玉.一种粉土路基的粉土固化剂及其固化方法:中国,201310216828.6[P].2013-09-18.ZHANG Tao,CAI Guo-jun,LIU Song-yu.A silty soil reinforcement agent and solidification method:China,201310216828.6[P].2013-09-18.
    [10]刘松玉,蔡国军.基于生物能源副产品木质素的土体稳定性加固剂:中国,201010271040.1[P].2011-02-09.LIU Song-yu,CAI Guo-jun.A soil reinforcement additives based on lignin from bio-energy by-products:China,201010271040.1[P].2011-02-09.
    [11]王保田,王建勋,张文慧,等.木质素磺酸钙在改良淤泥中的应用及改良方法:中国:200910234237.5[P].2010-05-19.WANG Bao-tian,WANG Jian-xun,ZHANG Wen-hui,et al.The application of calcium lignosulfonate for stabilizing sludge:China:200910234237.5[P].2010-05-19.
    [12]交通部公路科学研究院.JTG E51-2009公路工程无机结合料稳定材料试验规程[S].北京:人民交通出版社,2009.The Highway Research Institute of Transportation Ministry.JTG E51-2009 Test methods of materials stabilized with inorganic binders for highway engineering[S].Beijing:China Communications Press,2009.
    [13]南京水利科学研究院.SL237-1999土工试验规程[S].北京:中国水利水电出版社,1999.Nanjing Hydraulic Research Institute.SL237-1999Specification of soil test[S].Beijing:China Water&Power Press,1999.
    [14]樊恒辉,路立娜,贺智强,等.一种测定土体单轴抗拉强度的试验方法及装置:中国,201310651702.1[P].2014-03-26.FAN Heng-hui,LU Li-na,HE Zhi-qiang,et al.A test method and equipment for measuring uniaxial tensile strength of soil:China,201310651702.1[P].2014-03-26.
    [15]路立娜,樊恒辉,陈华,等.分散性土单轴抗拉强度影响因素试验研究[J].岩土工程学报,2014,36(6):1160-1166.LU Li-na,FAN Heng-hui,CHEN Hua,et al.Influencing factors for uniaxial tensile strength of dispersive soils[J].Chinese Journal of Geotechnical Engineering,2014,36(6):1160-1166.
    [16]樊恒辉,赵高文,孔令伟,等.一种测定土体湿化、崩解与分散的试验方法:中国,201210001204.8[P].2012-07-11.FAN Heng-hui,ZHAO Gao-wen,KONG Ling-wei,et al.A test method for determination of soil moisture,disintegration and dispersion:China,201210001204.8[P].2012-07-11.
    [17]唐朝生,施斌,高玮,等.含砂量对聚丙烯纤维加筋黏性土强度影响的研究[J].岩石力学与工程学报,2007,26(增刊1):2968-2973.TANG Chao-sheng,SHI Bin,GAO Wei,et al.Study on effects of sand content on strength of polypropylene fiber reinforced clay soil[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(Supp.1):2968-2973.
    [18]吕海波,曾召田,葛若东,等.胀缩性土抗拉强度试验研究[J].岩土力学,2013,34(3):615-620.LüHai-bo,ZENG Zhao-tian,GE Ruo-dong,et al.Experimental study of tensile strength of swell-shrink soils[J].Rock and Soil Mechanics,2013,34(3):615-620.
    [19]冉龙洲,宋翔东,唐朝生.干燥过程中膨胀土抗拉强度特性研究[J].工程地质学报,2011,19(4):620-625.RAN Long-zhou,SONG Xiang-dong,TANG Chao-sheng.Laboratorial investigation on tensile strength of expensive soil during drying[J].Journal of Engineering Geology,2011,19(4):620-625.
    [20]李喜安,黄润秋,彭建兵.黄土崩解性试验研究[J].岩石力学与工程学报,2009,28(1):3207-3213.LI Xi-an,HUANG Run-qiu,PENG Jian-bing.Experimental research on disintegration of loess[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(1):3207-3213.
    [21]王敏.湿陷性黄土场地地基处理前后土样微观结构分析[D].太原:太原理工大学,2013.WANG Min.Microstructural analysis of collapsible loess before and after treatment[D].Taiyuan:Taiyuan University of Technology,2013.
    [22]朱长歧,周斌,刘海峰.天然胶结钙质土强度及微观结构研究[J].岩土力学,2014,35(6):1655-1663.ZHU Chang-qi,ZHOU Bin,LIU Hai-feng.Investigation on strength and microstructure of naturally cemented calcareous soil[J].Rock and Soil Mechanics,2014,35(6):1655-1663.
    [23]宁建国,黄新.固化土结构形成及强度增长机理试验[J].北京航空航天大学学报,2006,32(1):97-102.NING Jian-guo,HUANG Xin.Experiment on structural formation and mechanism of strength increasing of stabilized soil[J].Journal of Beijing University of Aeronautics and Astronautics,2006,32(1):97-102.
    [24]TINGLE J S,NEWMAN J K,LARSON S L,et al.Stabilization mechanisms of nontraditional additives[J].Journal of the Transportation Research Board,2007,2(1989):59-67.
    [25]VINOD J S,INDRARATNA B,MAHAMUD M A A.Stabilization of an erodible soil using a chemical admixture[J].Ground Improvement,2010,163(1):43-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700