用户名: 密码: 验证码:
青藏高原维管植物物种丰富度分布的情景模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Scenarios simulation of vascular plant species abundance distribution on Qinghai-Tibet Plateau
  • 作者:范泽孟 ; 黄言 ; 岳天祥
  • 英文作者:FAN Zemeng;HUANG Yan;YUE Tianxiang;State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS;College of Resources and Environment,University of Chinese Academy of Sciences;
  • 关键词:青藏高原 ; 维管植物物种丰富度 ; 空间分析模型 ; 情景分析
  • 英文关键词:Qinghai-Tibet Plateau;;vascular plant species abundance;;spatial distribution;;scenarios simulation
  • 中文刊名:DLXB
  • 英文刊名:Acta Geographica Sinica
  • 机构:中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室;中国科学院大学;
  • 出版日期:2018-02-08 14:59
  • 出版单位:地理学报
  • 年:2018
  • 期:v.73
  • 基金:国家自然科学基金项目(41271406);国家自然科学基金重点项目(91325204,91325304);; 国家重点研发计划项目(2017YFA0603702);; 资源与环境信息系统国家重点实验室自主部署创新研究计划项目(088RA600YA)~~
  • 语种:中文;
  • 页:DLXB201801015
  • 页数:13
  • CN:01
  • ISSN:11-1856/P
  • 分类号:166-178
摘要
如何充分利用离散的观测数据,通过对维管植物物种分布丰富度及其与生境因子之间的相互作用和影响机理的定量分析,实现维管植物物种丰富度的空间分布及其情景模拟,是目前生物多样性研究前沿和核心内容之一。针对这一问题,在实现青藏高原37个国家自然保护区的维管植物物种数量收集和边界数据矢量化的基础上,分别进行维管植物物种数量与土地覆盖类型、环境因子和景观生态指数等三大类生境因子之间的相关关系的定量计算和对比分析,筛选和确定最佳相关分析方程,进而构建青藏高原维管植物物种丰富度的空间模拟分析模型。该模型中,维管植物物种丰富度与生境因子之间的复相关系数为0.94,模型验证结果表明,青藏高原的维管植物物种的平均丰富度为496.79种/100 km~2,其空间分布格局整体上呈东南向西北逐渐减少趋势;另外,除柴达木盆地荒漠区域以外,维管植物物种的空间分布随海拔的升高而减少。基于CMIP5 RCP 2.6、RCP 4.5和RCP 8.5三种气候情景模拟获得的青藏高原维管植物物种丰富度未来情景结果显示,在T0-T4(2010-2100)时段内,青藏高原维管植物物种丰富度整体将呈减少趋势。RCP 8.5情景下青藏高原维管植物物种丰富度的变化幅度最大,而RCP 2.6情景下的维管植物物种丰富度的变化幅度最小。研究表明,本文构建的模型能够对青藏高原维管植物物种丰富度的空间分布格局及其未来情景进行模拟分析,模拟结果可为青藏高原生物多样性及其对气候变化响应的综合评估和情景模拟提供方法和技术支持。
        For quantitatively explaining the relationship between the vascular plant abundance and habitat factors in the Qinghai-Tibet Plateau, a spatial simulation method has been developed to simulate the distribution of vascular plant species abundance. In this paper, seven datasets covering 37 national nature reserves were used to screen the best correlation equation between the vascular plant abundance and habitat factors in the plateau. These datasets include imformation on the vascular plant type, land cover, mean annual biotemperature, average total annual precipitation, topographic relief, patch connectivity and ecological diversity index. The results show that the multiple correlation coefficient between vascular plant abundance and various of habitat factors is 0.94, the mean error validated with the vascular plant species data of 37 national nature reserves is 2.21 types/km~2, and the distribution of vascular plant species abundance gradually decreases from southeast to northwest, and reduces with increasing altitude except for the desert area of Qaidam Basin on the Qinghai-Tibet Plateau. Furthermore,the changes of vascular plant species abundance in the plateau during the periods from 1981 to 2010(T0), from 2011-2040(T2), from 2041 to 2070(T3) and from 2071 to 2100(T4) were simulated by combining the land cover change in China and the climatic scenarios of CMIP5 RCP2.6, RCP4.5 and RCP8.5. The results from T0 to T4 show that the vascular plant species abundance in the plateau would decrease in the future, the vascular plant species abundance had the biggest change ranges under RCP8.5 scenario and the smallest change ranges under RCP2.6 scenario. In short, dynamic change and interaction of habitat factors directly affect the spatial distribution of vascular plant species abundance on the Qinghai-Tibet Plateau.
引文
[1]Yue T X,Fan Z M,Chen C F,et al.Surface modelling of global terrestrial ecosystems under three climate change scenarios.Ecological Modelling,2011,222(14):2342-2361.
    [2]Godínez-Alvarez H,Herrick J E,Mattocks M,et al.Comparison of three vegetation monitoring methods:their relative utility for ecological assessment and monitoring.Ecological Indicators,2009,9(5):1001-1008.
    [3]Pielke R A,Avissar R,Raupach M,et al.Interactions between the atmosphere and terrestrial ecosystems:Influence on weather and climate.Global Change Biology,1998,4(5):461-475.
    [4]Gaston K J.Global patterns in biodiversity.Nature,2000,405(6783):220-227.
    [5]Foley J A,De Fries R,Asner G P,et al.Global Consequences of Land Use.Science,2005,309(5734):570-574.
    [6]Zhou G S,Zhang X S.Study on Chinese climate-vegetation relationship.Acta Phytoecologica Sinica,1996,20(2):113-119.
    [7]Gavilán R G.The use of climatic parameters and indices in vegetation distribution.A case study in the Spanish Sistema Central.International Journal of Biometeorology,2005,50(2):111-120.
    [8]Graham R W,Grimm E C.Effects of global climate change on the patterns of terrestrial biological communities.Trends in Ecology&Evolution,1990,5(9):289-292.
    [9]Stephenson N L.Climatic control of vegetation distribution:The role of the water balance.American Naturalist,1990,135(5):649-670.
    [10]Rounsevell M D A,Reay D S.Land use and climate change in the UK.Land Use Policy,2009,26(1):S160-S169.
    [11]Turner B L,Lambin E F,Reenberg A.The emergence of land change science for global environmental change and sustainability.Proceedings of the National Academy of Sciences,2007,104(52):20666-20671.
    [12]Kalnay E,Cai M.Impact of urbanization and land-use change on climate.Nature,2003,423(6939):528-531.
    [13]Moreira F,Silva J P,Estanque B,et al.Mosaic-level inference of the impact of land cover changes in agricultural landscapes on biodiversity:A case-study with a threatened grassland bird.Plo S One,2012,7(6):38876.
    [14]Sala O E,Chapin F S,Armesto J J,et al.Global biodiversity scenarios for the year 2100.Science,2000,287(5459):1770-1774.
    [15]Zerger A,Gibbons P,Seddon J,et al.A method for predicting native vegetation condition at regional scales.Landscape and Urban Planning,2009,91(2):65-77.
    [16]Song M H,Zhou C P,Ouyang H.Simulated distribution of vegetation types in response to climate change on the Tibetan Plateau.Journal of Vegetation Science,2005,16(3):341-350.
    [17]Shen Zehao,Zhao Jun.Prediction of the spatial patterns of species richness based on the plant topography relationship:An application of GAMs approach.Acta Phytoecologica Sinica,2007,27(3):953-963.[沈泽昊,赵俊.基于维管植物-地形关系的物种丰富度空间格局预测:GAMs途径的一种应用.生态学报,2007,27(3):953-963.]
    [18]Zhang Y L,Hu Z J,Qi W,et al.Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method.Journal of Geographical Sciences,2016,26(1):27-44.
    [19]Sun Honglie,Zheng Du,Yao Tandong,et al.Protection and construction of the national ecological security shelter zone on Tibetan Plateau.Acta Geographica Sinica,2012,67(1):3-12.[孙鸿烈,郑度,姚檀栋,等.青藏高原国家生态安全屏障保护与建设.地理学报,2012,67(1):3-12.]
    [20]Myers N,Mittermeier R A,Mittermeier C G,et al.Biodiversity hotspots for conservation priorities.Nature,2000,403(6772):853-858.
    [21]Zhuo Ga,Li Xin,Luo Bu,et al.Dynamical analysis of recent vegetation variation with satellite dataset in Tibet Region.Plateau Meteorology,2010,29(3):563-571.[卓嘎,李欣,罗布,等.西藏地区近期植被变化的遥感分析.高原气象,2010,29(3):563-571.]
    [22]Liao Qingfei,Zhang Xin,Ma Quanqing,et al.Spatiotemporal variation of fractional vegetation cover and remote sensing monitoring in the eastern agricultural region of Qinghai Province.Acta Ecologica Sinica,2014,34(20):5936-5943.[廖清飞,张鑫,马全青,等.青海省东部农业区植被覆盖时空演变遥感监测与分析.生态学报,2014,34(20):5936-5943.]
    [23]Zhong L,Ma Y M,Salama M S,et al.Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau.Climatic Change,2010,103(3-4):519-535.
    [24]Zhang L,Guo H D,Ji L,et al.Vegetation greenness trend(2000 to 2009)and the climate controls in the QinghaiTibetan Plateau.Journal of Applied Remote Sensing,2013,7(1):073572-073572.
    [25]Zhou D W,Fan G Z,Huang R H,et al.Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change.Advances in Atmospheric Sciences,2007,24(3):474-484.
    [26]Piao S L,Wang X H,Ciais P,et al.Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006.Global Change Biology,2011,17(10):3228-3239.
    [27]Wang Qingxia,Lv Shihua,Bao Yan,et al.Characteristics of vegetation change and its relationship with climate factors in different time-scales on Qinghai-Xizang Plateau.Plateau Meteorology,2014,33(2):301-312.[王青霞,吕世华,鲍艳,等.青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析.高原气象,2014,33(2):301-312.]
    [28]Liu Junhui,Gao Jixi,Wang Wenjie.Variations of vegetation coverage and its relations to global climate changes on the Tibetan Plateau during 1981-2005.Journal of Mountain Science,2013,31(2):234-242.[刘军会,高吉喜,王文杰.青藏高原植被覆盖变化及其与气候变化的关系.山地学报,2013,31(2):234-242.]
    [29]Wade A A,Theobald D M,Laituri M J.A multi-scale assessment of local and contextual threats to existing and potential US protected areas.Landscape and Urban Planning,2011,101(3):215-227.
    [30]Crist P J,Kohley T W,Oakleaf J.Assessing land-use impacts on biodiversity using an expert systems tool.Landscape Ecology,2000,15(1):47-62.
    [31]Liu Jiyuan,Kuang Wenhui,Zhang Zengxiang,et al.Spatiotemporal characteristics,patterns and causes of land use changes in China since the late 1980s.Acta Geographica Sinica,2014,69(1):3-14.[刘纪远,匡文慧,张增祥,等.20世纪80年代末以来中国土地利用变化的基本特征与空间格局.地理学报,2014,69(1):3-14.]
    [32]Zhao N,Yue T X.A modification of HASM for interpolating precipitation in China.Theoretical and Applied Climatology,2014,116(1):273-285.
    [33]Li Jing,Fan Zemeng,Yue Tianxiang.Spatio-temporal simulation of land cover scenarios in southwest of China.Acta Ecologica Sinica,2014,34(12):3266-3275.[李婧,范泽孟,岳天祥.中国西南地区土地覆盖情景的时空模拟.生态学报,2014(12):3266-3275.]
    [34]Yue T X.Surface Modeling:High Accuracy and High Speed Methods.Vol.2.New York:CRC Press,2011.
    [35]Yue T X,Fan Z M,Liu J Y.Scenarios of land cover in China.Global and Planetary Change,2007,55(4):317-342.
    [36]Yue T X,Fan Z M,Liu J Y.Changes of major terrestrial ecosystems in China since 1960.Global and Planetary Change,2005,48(4):287-302.
    [37]Fan Zemeng,Yue Tianxiang,Liu Jiyuan,et al.Spatial and temporal distribution of land cover scenarios in China.Acta Geographica Sinica,2005,60(6):63-74.[范泽孟,岳天祥,刘纪远,等.中国土地覆盖时空变化未来情景分析.地理学报,2005,60(6):63-74.]
    [38]Yue T X,Zhao N,Ramsey R D,et al.Climate change trend in China,with improved accuracy.Climatic Change,2013,120(1):137-151.
    [39]Fan Zemeng,Yue Tianxiang,Chen Chuanfa.Downscaling of global mean annual temperature under different scenairos.Progress in Geography,2012,31(3):267-274.[范泽孟,岳天祥,陈传法.全球平均气温未来情景的降尺度分析.地理科学进展,2012,31(3):267-274.]
    [40]Fan Zemeng,Yue Tianxiang,Chen Chuanfa,et al.Downscaling simulation for the scenarios of precipitation in China.Geographical Research,2012,31(12):2283-2291.[范泽孟,岳天祥,陈传法,等.中国降水未来情景的降尺度模拟.地理研究,2012,31(12):2283-2291.]
    [41]Yue T X,Wang S H.Adjustment computation of HASM:A high-accuracy and high-speed method.International Journal of Geographical Information Science,2010,24(11):1725-1743.
    [42]Fan Zemeng,Yue Tianxiang,Song Yinjun.Changing trends of temperature and precipitation based on YUE-HASM method.Geographical Research,2009,28(3):634-652.[范泽孟,岳天祥,宋印军.基于YUE-HASM方法的气温与降水时空变化趋势.地理研究,2009,28(3):643-652.]
    [43]Zhang Yili,Li Bingyuan,Zheng Du.A discussion on the boundary and area of the Tibetan Plateau in China.Geographical Research,2002,21(1):1-8.[张镱锂,李炳元,郑度.论青藏高原范围与面积.地理研究,2002,21(1):1-8.]
    [44]Zhang Yili,Li Bingyuan,Zheng Du.The data publish of A discussion on the boundary and area of the Tibetan Plateau in China:Geographical information system data of the boundary and area of the Tiebetan Plateau in China.Global Change Research Data Publishing&Repository,2014.doi:10.3974/geodb.2014.01.12.v1.[张镱锂,李炳元,郑度.《论青藏高原范围与面积》一文数据的发表:青藏高原范围界线与面积地理信息系统数据.全球变化科学研究数据出版系统,2014.doi:10.3974/geodb.2014.01.12.v1.]
    [44]Fan Z M,Zhang X,Li J,et al.Land-cover changes of national nature reserves in China.Journal of Geographical Sciences,2013,23(2):258-270.
    [45]Fan Zemeng,Zhang Xuan,Li Jing,et al.Transition trends of land-cover in national nature reserves of China.Acta Geographica Sinica,2012,67(12):1623-1633.[范泽孟,张轩,李婧,等.国家级自然保护区土地覆盖类型转换趋势.地理学报,2012,67(12):1623-1633.]
    [46]Yue T X,Liu J Y,J?rgensen S E,et al.Changes of Holdridge life zone diversity in all of China over half a century.Ecological Modelling,2001,144(2):153-162.
    [47]Shary P A,Sharaya L S,Mitusov A V.Fundamental quantitative methods of land surface analysis.Geoderma,2002,107(1):1-32.
    [48]Yue Tianxiang,Ma Shengnan,Wu Shixin,et al.Theoretical analysis of ecological diversity models and their application in Fukang of Xinjiang Uygur Autonomous Region.Chinese Journal of Applied Ecology,2006,17(5):867-872.[岳天祥,马胜男,吴世新,等.生态多样性模型的理论分析及应用:以新疆维吾尔自治区阜康地区为例.应用生态学报,2006.17(5):867-872.]
    [49]Fan Zemeng,Yue Tianxiang.Temporal and spatial changes pattern of Holdridge life zones and diversity in China.Geographical Research,2005,24(1):121-129,163.[范泽孟,岳天祥.中国Holdridge生命地带及其多样性的时空变化分析.地理研究,2005,24(1):121-129,163.]
    [50]Yue T X.Studies on models for biodiversity.Journal of Natural Resources,1999,14(4):377-380.[岳天祥.生物多样性模型研究.自然资源学报,1999,14(4):377-380.]
    [51]Yue T X,Xu B,Liu J Y.A patch connectivity index and its change in relation to new wetland at the Yellow River Delta.International Journal of Remote Sensing,2004,25(21):4617-4628.
    [52]van Vuuren D P,Edmonds J,Kainuma M,et al.The representative concentration pathways:An overview.Climatic Change,2011,109(1/2):5.
    [53]Fan Z M,Li J,Yue T X,et al.Scenarios of land cover in karst area of southwestern China.Envrionment Earth Science,2015,74(1):6407-6420.
    [54]Xu Haigen,Cao Mingchang,Wu Jun,et al.China Biodiversity Assessment Report.Beijing:Science Press,2013.[徐海根,曹铭昌,吴军,等.中国生物多样性本底评估报告.北京:科学出版社,2013.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700