用户名: 密码: 验证码:
高速运载器燃油热管理系统优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of fuel heat management system for high-speed aircraft
  • 作者:庞丽萍 ; 邹凌宇 ; 阿嵘 ; 杨晓东 ; 范俊
  • 英文作者:PANG Liping;ZOU Lingyu;A Rong;YANG Xiaodong;FAN Jun;School of Aviation Science and Engineering,Beihang University;Institute of Manned Space System Engineering,China Academy of Space Technology;Beijing Electro-Mechanical Engineering Institute;Army Aviation Research Institute;
  • 关键词:高速运载器 ; 热管理系统 ; 燃油热沉 ; 飞行时长 ; 消耗性冷却剂
  • 英文关键词:high-speed aircraft;;heat management system;;fuel heat sink;;flight time length;;expendable coolant
  • 中文刊名:BJHK
  • 英文刊名:Journal of Beijing University of Aeronautics and Astronautics
  • 机构:北京航空航天大学航空科学与工程学院;中国空间技术研究院载人航天总体部;北京机电工程研究所;陆军航空兵研究所;
  • 出版日期:2018-09-06 16:42
  • 出版单位:北京航空航天大学学报
  • 年:2019
  • 期:v.45;No.312
  • 基金:国家重点研发计划(2017YFB1201100)~~
  • 语种:中文;
  • 页:BJHK201902004
  • 页数:7
  • CN:02
  • ISSN:11-2625/V
  • 分类号:29-35
摘要
燃油热管理系统设计随着运载器多电化与机载高能电子设备的发展已经得到高度重视,其中燃油的热承载能力是最关键因素。针对喷气推进式高速运载器,提出了一种大范围、多任务的燃油热管理系统多目标优化配置方法,其以热沉利用率最高和燃油质量代偿损失最小为目标函数,以循环回路的燃油最大质量流量、冷却水携带量和机载热负荷发热量为优化变量,采用改进的遗传算法NSGA-Ⅱ,在不同飞行任务规划下进行双目标优化设计,所获得的目标函数Pareto最优解集,满足预期的燃油热管理系统模式选择原则,且通过分析优化变量与优化目标间的相关性,可以量化燃油热管理系统优化配置准则与可达到的最小燃油质量代偿损失,可应用于支持多热沉重构的机载高效燃油热管理系统。
        With the rapid development of multi-electrification of aircraft and airborne high-energy electronic equipment,the design of fuel heat management system has been paid great attention to.The most critical factor is the thermal load capacity of fuel.For jet propulsion high-speed aircraft,this paper presents a multi-objective optimal allocation method for a large-scale and multi-task fuel heat management system.The thermal carrying capacity of fuel decreases with the increase of flight time,due to the dual effect of airborne thermal load and aerodynamic heating.In this paper,the improved genetic algorithm NSGA-Ⅱ is used to optimize the design of two targets under different flight mission planning.The objective function is heat sink efficiency and fuel compensation loss.The optimization variables are the maximum flow rate of the fuel cycle,the consumption of coolant and the heat load on board.The objective function Pareto optimal solution set is obtained to meet the expected model selection principle of the fuel heat management system.By analyzing the correlation between the optimized variable and the optimization target,the optimization configuration criterion and the minimum fuel compensation loss can be quantified,and the airborne efficient heat management system supporting the multiple heat sink reconstruction is designed.
引文
[1]MAHEFKEY T,YERKES K,DONOVAN B,et al.Thermal management challenges for future military aircraft power systems[C]∥Power Systems Conference.Warrendale,PA:SAE International,2004:3204.
    [2]VAN GRIETHUYSEN V J,GLICKSTEIN M R,PETLEY D H,et al.High-speed flight thermal management[M]∥MURTHY SN B,CURRAN E T.Developments in high-speed vehicle propulsion.Reston:AIAA,1996,165:517-579.
    [3]DOOLEY M,LUI N,NEWMAN R,et al.Aircraft thermal managementheat sink challenge[C]∥SAE 2014 Aerospace Systems and Technology Conference.Warrendale,PA:SAE International,2014:2193.
    [4]GANEV E,KOERNER M.Power and thermal management for future aircraft[C]∥SAE 2013 Aero Tech Congress&Exhibition.Warrendale,PA:SAE International,2013:2273.
    [5]FISCHER A.Design of a fuel thermal management system for long range air vehicles:AIAA-2005-5647[R].Reston:AIAA,2005.
    [6]YU S,GANEV E.Next generation power and thermal management system[J].SAE International Journal of Aerospace,2009,1(1):1107-1121.
    [7]DOOLEY M,LUI C,NEWMAN R.Efficient propulsion,power,and thermal management integration[C]∥49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Reston:AIAA,2013:1-8.
    [8]SPROUSE J.F-22 environmental control/thermal management fluid transport optimization[C]∥30th Internationnal Conference on Environmental Systems.Warrendale,PA:SAE International,2000:2266.
    [9]高峰,袁修干.高性能战斗机燃油热管理系统[J].北京航空航天大学学报,2009,35(11):1353-1356.GAO F,YUAN X G.Fuel thermal management system of high performance fighter aircraft[J].Journal of Beijing University of Aeronautics and Astronautics,2009,35(11):1353-1356(in Chinese).
    [10]BLACKBIRD H,FLIGHT A S.SR-71 flight manual[EB/OL].SR-71 Online,2001:1-57[2001-12-11].https:∥www.sr-71.org/black-bird/manual.
    [11]EDWARDS T.Liquid fuels and propellants for aerospace propulsion:1903-2003[J].Journal of Propulsion and Power,2003,19(6):1089-1107.
    [12]LAMM F P,VANDERSPURT T H.Catalytic fuel deoxy-genation system:US20060196174[P].2006-09-07.
    [13]MORRIS R,MILLER J,LIMAYE S.Fuel deoxygenation and aircraft thermal management[C]∥International Energy Conversion Engineering Conference and Exhibit.Reston:AIAA,2006:26-29.
    [14]RHEAUME J,CORDATOS H.Fuel deoxygenation systems:US20180016025[P].2018-01-18.
    [15]LETLOW J T,JENKINS L C.Development of an integrated environmental control system[C]∥International Conference on Environmental Systems.Warrendale,PA:SAE International,1998:981544.
    [16]DOMAN D B.Fuel flow topology and control for extending aircraft thermal endurance[J].Journal of Thermophysics and Heat Transfer,2018,32(1):35-50.
    [17]ROUKIS J G,BOCCHICCHIO R L.The performance of the water bubbler heat sink for the EF-111 aircraft[C]∥ASME 7th Intersociety Conference on Environmental Systems.New York:ASME,1977:1-5.
    [18]HARRISON W E,BINNS K E,ANDERSON S D,et al.High heat sink fuels for improved aircraft thermal management[C]∥International Conference on Environmental Systems.Warrendale,PA:SAE International,1993:932084.
    [19]HO Y H,LIN T,HILL B,et al.Thermal benefits of advanced integrated fuel system using JP-8+100 fuel[C]∥World Aviation Congress.Warrendale,PA:SAE International,1997:975507.
    [20]DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700