用户名: 密码: 验证码:
工业纯钛TA2熔盐电解法渗硼的渗层生长动力学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth kinetics of boride layer produced by molten salt electrolytic boriding on TA2
  • 作者:王碧侠 ; 李建新 ; 马兴飞 ; 马红周 ; 李子一
  • 英文作者:WANG Bi-xia;LI Jian-xin;MA Xing-fei;MA Hong-zhou;LI Zi-yi;Shaanxi Engineering Research Center of Metallurgy, Shaanxi Key Laboratory of Gold and Resources,Xi'an University of Architecture and Technology;
  • 关键词:熔盐电解 ; 渗硼 ; TiB_2 ; ; 生长动力学
  • 英文关键词:molten salt electrolysis;;boriding;;TiB_2;;titanium;;growth kinetics
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:西安建筑科技大学陕西省冶金工程技术研究中心陕西省黄金与资源重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:v.29;No.238
  • 基金:国家自然科学基金资助项目(51404186)~~
  • 语种:中文;
  • 页:ZYXZ201901015
  • 页数:7
  • CN:01
  • ISSN:43-1238/TG
  • 分类号:137-143
摘要
选用硼酸钠-氯化钙体系为电解质,采用熔盐电解法在钛表面渗硼,研究熔盐温度及渗硼时间对渗层物相、形貌及渗层厚度的影响,并对渗层生长动力学进行了分析。利用XRD对渗硼试样表面进行物相分析,利用扫描电镜(SEM)观察渗硼试样的断面形貌并采用能谱(EDS)进行元素分析。结果表明:在温度为1153~1293 K、电流密度为500 A/m~2,通电15~60 min的条件下,Ti表面得到的硼化物渗层上层是均匀致密的TiB_2,下层是嵌入基体的针状TiB;在1293 K下渗硼60 min后,所得渗层中TiB_2厚度约为8.4μm。根据TiB_2渗层厚度随时间的变化关系,计算出渗层在1193、1243和1293 K的生长速率常数分别为5.85×10~(-15)、1.24×10~(-14)和2.10×10~(-14) m~2/s,TiB_2渗层生长激活能为152.02 kJ/mol。
        The molten salt electrolysis method was applied for boronizing on titanium surface using the Na_2B_4O_7-CaCl_2 composition as electrolyte. The effects of salt temperature and boriding time on the phase composition, microstructure and the thickness of the TiB_2/TiB layer were investigated and the growth kinetics of the boride layer was analyzed. XRD,SEM and EDS means were applied to analyze the phase composition, microstructure and morphology, element content of the borides layer, respectively. The results show that, when the experiment is carried out at 1153~1293 K with the current density of 500 A/m~2 and boriding time of 15~60 min, the boride layers consist of a homogeneous and dense TiB_2 on the top and TiB whiskers penetrating into the substrate. The thickness of TiB_2 is 8.4 μm when boriding at 1293 K for 60 min.The growth kinetics of the boride layer was studied by analyzing the relationship of the thickness of TiB_2 layer versus time by mathematic method, and it is calculated that the constant values for the TiB_2 layer at 1193,1243 and 1293 K are 5.85×10~(-15), 1.24×10~(-14 )and 2.10×10~(-14)m~2/s, respectively, and the activation energy for the growth of the TiB_2 layer is determined to be 152.02 kJ/mol.
引文
[1]李飞.世界钛工业现状及发展趋势[J].低碳世界,2016(24):127-128.LI Fei.Current situation and development trend of titanium industry in the world[J].Low Carbon World,2016(24):127-128.
    [2]冯颖芳.世界钛及钛合金的应用研究进展[J].世界有色金属,2012(4):54-57.FENG Ying-fang.Advances in the application of titanium and titanium alloys in the world[J].World Nonferrous Metals,2012(4):54-57.
    [3]LEYENSAND C,PETERS M.Titanium and titanium alloys[M].K?ln:Wiley-VCH,2005:2-4.
    [4]LUTJERING G,WILLIAMS J C.Titanium[M].Berlin:Springer-Verlag,2017:383.
    [5]ZHANG Chang-jiang,KONG Fan-tao,XIAO Shu-long,NIUHong-zhi,XU Li-juan,CHEN Yu-yong.Evolution of microstructural characteristic and tensile properties during preparation ofTiB/Ti composite sheet[J].Materials and Design,2012,36:505-506.
    [6]SARMA B,CHANDRAN K S R.Recent advances in surface hardening of titanium[J].JOM,2011,63(2):85-86.
    [7]KEDDAM M,TAKTAK S,TASGETIREN S.A diffusion model for the titanium borides on pure titanium[J].Surface Engineering,2016,32(11):802-808.
    [8]KARTAL G,TIMUR S,URGEN M,ERDEMIR A.Electrochemical boriding of titanium for improved mechanical properties[J].Surface&Coatings Technology,2010,204(23):3935-3939.
    [9]HUANG You-guo,CHEN Jia-rong,ZHANG Meng-ling,ZHONG Xin-xian,WANG Hong-qiang,LI Qing-yu.Electrolytic boronizing of titanium in Na2B4O7-20%K2CO3[J].Materials and Manufacturing Processes,2013,28(12):1310-1313.
    [10]慕东,彭丽,胡志华,沈保罗.有色金属及其合金渗硼的研究与展望[J].热加工工艺,2010,39(16):129-132,135.DONG U,PENG Li,HU Zhi-hua,SHEN Bao-luo.Research and development prospects of boronizing for non-ferrous and its alloys[J].Hot Working Technology,2010,39(16):129-132,135.
    [11]黄波,孙勇,段永华,彭明军,陈帅,刘晓梅.纯钛的熔盐渗硼[J].材料科学与工程学报,2016,34(1):105-108,172.HUANG Bo,SUN Yong,DUAN Yong-hua,PENG Ming-jun,CHEN Shuai,LIU Xiao-mei.Molten salt boronizing of pure titanium[J].Journal of Materials Science&Engineering,2016,34(1):105-108,172.
    [12]李凤华,王丽娜,衣晓红,樊占国.钛及钛合金渗硼的研究现状与反应机理[J].材料与冶金学报,2013,12(3):212-217.LI Feng-hua,WANG Li-na,YI Xiao-hong,FAN Zhan-guo.The research status and reaction mechanism of boronizing on titanium and its alloys[J].Journal of Materials and Metallurgy,2013,12(3):212-217.
    [13]姜信昌,王健安,韩文祥,曹晓明.气体渗硼工艺研究[J].金属热处理,1989(3):11-17.JIANG Xin-chang,WANG Jian-an,HAN Wen-xiang,CAOXiao-ming.Study on gas boronizing process[J].Heat Treatment of Metals,1989(3):11-17.
    [14]孙希泰.渗硼工艺的现状和前景[J].金属热处理,1985(1):51-52.SUN Xi-tai.Current status and prospects of boronizing process[J].Heat Treatment of Metals,1985(1):51-52.
    [15]刘建建,陈祝平.膏剂渗硼及其研究现状[J].电镀与精饰,2011,33(7):24-28.LIU Jian-jian,CHEN Zhu-ping.Paste boriding and its research status[J].Plating and Finishing,2011,33(7):24-28.
    [16]冯策,唐国章,王心悦,王雁利,杨海丽.电流密度对TC4钛合金表面熔盐电解渗硼的影响[J].钢铁钒钛,2016,37(3):48-51.FENG Ce,TANG Guo-zhang,WANG Xin-yue,WANG Yan-li,YANG Hai-li.Effect of current density on boriding on TC4titanium alloy by molten salt electrolysis[J].Iron Steel Vanadium Titanium,2016,37(3):48-51.
    [17]魏宝敏,台立民,迟长志.TC4钛合金固体粉末法渗硼工艺研究[J].热加工工艺,2015,44(4):201-204.WEI Bao-min,TAI Li-min,CHI Chang-zhi.Study on technology of boronizing on TC4 titanium alloy by solid powder method[J].Hot Working Technology,2015,44(4):201-204.
    [18]潘婷,樊新民,周旸.钛及钛合金渗硼技术的发展[J].热处理,2014,29(2):27-33.PAN Ting,FAN Xin-min,ZHOU Yang.Development of boriding technology for titanium and titanium alloy[J].Heat Treatment,2014,29(2):27-33.
    [19]黄有国,赵欣,任孟德,李庆余,王红强.钛金属(B4C+B2O3)固体粉末渗硼[J].稀有金属材料与工程,2013,42(1):158-161.HUANG You-guo,ZHAO Xin,REN Meng-de,LI Qing-yu,WANG Hong-qiang.Pack boronizing of titanium by B4C+B2O3[J].Rare Metal Materials and Engineering,2013,42(1):158-161.
    [20]贾宝平,贺跃辉,汤义武,刘业翔.钛金属固体法渗硼新技术[J].中南大学学报(自然科学版),2005,36(2):179-182.JIA Bao-ping,HE Yue-hui,TANG Yi-wu,LIU Ye-xiang.New technique of pack boronizing of titanium[J].Journal of Central South University(Science and Technology),2005,36(2):179-182.
    [21]吴晔康,杨海丽,徐宏,尚磊,王心悦.熔盐电解法渗硼工艺的优化[J].电镀与精饰,2014,36(11):24-27.WU Ye-kang,YANG Hai-li,XU Hong,SHANG Lei,WANGXin-yue.Process optimization of boronizing by molten salt electrolysis[J].Plating and Finishing,2014,36(11):24-27.
    [22]孔圆圆,孙勇,段永华,彭明军,黄波,王赛北.纯钛表面渗硼层的制备及其性能[J].金属热处理,2017,42(6):148-152.KONG Yuan-yuan,SUN Yong,DUAN Yong-hua,PENGMing-jun,HUANG Bo,WANG Sai-bei.Preparation of boronized layer on pure titanium surface and its properties[J].Heat Treatment of Metals,2017,42(6):148-152.
    [23]柳松青.钛的表面渗硼处理实验[J].实验技术与管理,2004(2):82-85.LIU Song-qing.Experiments on the surface boronizing of titanium[J].Experimental Technology and Management,2004(2):82-85.
    [24]KARTAL G,TIMUR S.Growth kinetics of titanium borides produced by CRTD-Bor method[J].Surface&Coatings Technology,2013,215(2):440-446.
    [25]黄有国,任孟德,季晶晶,陈家荣,李庆余,王红强.钛金属表面熔盐电解法制备TiB2/TiB表面层[J].金属热处理,2012,37(7):61-64.HUANG You-guo,REN Meng-de,JI Jing-jing,CHEN Jia-rong,LI Qing-yu,WANG Hong-qiang.TiB2/TiB coating preparation on titanium surface by molten salt electrolytic boriding[J].Heat Treatment of Metals,2012,37(7):61-64.
    [26]黄有国,任孟德,赵欣,李庆余,王红强.钛金属熔融Na2O4B7硼化:热力学和动力学过程[J].材料导报,2012,26(6):14-16.HUANG You-guo,REN Meng-de,LI Qing-yu,WANGHong-qiang.Boriding of titanium in molten anhydrous borax:The process of thermodynamics and dynamics[J].Materials Review,2012,26(6):14-16.
    [27]王碧侠,程亮,田栋华,马兴飞.TC4钛合金熔盐电解法渗硼[J].稀有金属材料与工程,2016,45(3):709-714.WANG Bi-xia,CHEN Liang,TIAN Dong-hua,MA Xing-fei.Boriding of TC4 titanium alloy by molten salt electrolysis[J].Rare Metal Materials and Engineering,2016,45(3):709-714.
    [28]SARMA B,CHANDRAN K S R.Accelerated kinetics of surface hardening by diffusion near phase transition temperature:Mechanism of growth of boride layers on titanium[J].Acta Materialia,2011,59:4216-4228.
    [29]段淑贞,乔芝郁.熔盐化学-原理和应用[M].北京:冶金工业出版社,1990:397-411.DUAN Shu-zhen,QIAO Zhi-yu.Molten salt chemistryPrinciple and application[M].Beijing:Metallurgical Industry Press,1990:397-411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700