用户名: 密码: 验证码:
基于固相微萃取-GC/MS联用的除虫菊挥发性次生代谢产物分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pyrethrum Based on Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry:Analysis on Volatile Metabolites
  • 作者:毛静 ; 董艳芳 ; 童俊 ; 徐冬云 ; 方林川 ; 周媛 ; 陈法志
  • 英文作者:Mao Jing;Dong Yanfang;Tong Jun;Xu Dongyun;Fang Linchuan;Zhou Yuan;Chen Fazhi;Institute of Forestry and Fruit Tree, Wuhan Academy of Agricultural Sciences;
  • 关键词:除虫菊 ; 挥发物 ; 次生代谢 ; 固相微萃取 ; GC-MS
  • 英文关键词:pyrethrum;;volatiles;;metabolites;;solid phase microextraction;;GC-MS
  • 中文刊名:ZNTB
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:武汉市农业科学院林业果树研究所;
  • 出版日期:2019-04-23
  • 出版单位:中国农学通报
  • 年:2019
  • 期:v.35;No.520
  • 基金:武汉市农业科学院科技创新项目“经济果木栽培关键技术及功能成分提取研究”(CX201709);; 武汉市科技局宿根花卉工程技术研究中心项目(武科计[2016]42)
  • 语种:中文;
  • 页:ZNTB201913024
  • 页数:6
  • CN:13
  • ISSN:11-1984/S
  • 分类号:136-141
摘要
采用固相微萃取结合气质联用技术分析比较了除虫菊叶片与花序,以及花序5个开放时期(花蕾期、初开期、平开期、盛开期、开放末期)挥发性次生代谢物的成分与释放规律。结果表明:(1)从除虫菊叶片与花序中共检测到19种挥发性次生代谢物质,分别属于4个类别:单萜类、多萜类、绿叶挥发物类以及其他等;绿叶挥发物与多萜类是其中具有较高质量分数的化合物类别;(2)在除虫菊花序的不同开放阶段,各类挥发性成分的释放规律不同;花序挥发的次生物质比重最大的(E)-β-法尼烯的释放量在初开期达到最大值;绿叶挥发物类在花蕾期的释放量最高,并且随着花序的发育其释放量呈现逐渐降低的趋势;单萜类与其他类别的挥发物则都是在盛开期后的释放量有所升高。研究结果为了解除虫菊挥发性次生代谢物质成分奠定了基础,为除虫菊抗虫研究提供了依据。
        We investigated and compared the volatile components released by the leaves and flowers of pyrethrum, and the inflorescences at 5 different development periods(bud period, first-opening period,middle-opening period, full-opening period, late-opening period) by using the solid phase microextraction coupled with gas chromatography-mass spectrometry. The results showed that:(1) totally 19 main components were detected in the volatiles of leaves and flowers of pyrethrum, which belonged to 4 volatile categories including green leaf volatile, monoterpene, sesquiterpene and the others; green leaf volatile and sesquiterpene were the main categories with high mass fraction;(2) volatile compounds emitted from different development periods of flowers showed different patterns: E-β-farnesene was the dominant component released the highest in the first-opening period, then declined in later periods; green leaf volatiles emitted the highest in the flower bud period and then continuously decreased in later periods. Monoterpenes and other compounds were gradually rising after full-opening period. The results can provide a foundation to the study of volatile compounds emitted by the pyrethrum and a basis for further research on the pest resistance of pyrethrum.
引文
[1] Morgan, E.D., Wilson, I.D. Insect hormones and insect chemical ecology[A].Barton, D.H.R., Nakanishi, K., Mewth-Cohn, O.(Eds.),Comprehensive Natural Products Chemistry[M].Oxford:Pergamon Press,1999(8):263-375.
    [2] Ramirez AM, Stoopen G, Menzel TR, et al. Bidirectional Secretions from Glandular Trichomes of Pyrethrum Enable Immunization of Seedlings[J].Plant Cell2012,24(10):4252-65.
    [3] Dicke M, Baldwin IT. The evolutionary context for herbivoreinduced plant volatiles:beyond the‘cry for help’[J].Trends in Plant Science,2010,15(3):167-175.
    [4] Irmisch S, Jiang Y, Chen F, et al. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam polar(Populus trichocarpa)[J]. BioMed Central Plant Biology,2014,14:270.
    [5] Martinez-Medina A, Flors V, Heil M, et al. Recognizing plant defense priming[J].Trends in Plant Science,2016,21(10):818-822.
    [6] Dicke M. Behavioural and community ecology of plants that cry for help[J].Plant Cell and Environment,2009,32:654-665.
    [7] Mazid M, Khan T, Mohammad F. Role of secondary metabolites in defense mechanisms of plants[J].Biology and Medicine,2011,3(2):232-249.
    [8]刘雨晴,赵天增,董建军,等.天然除虫菊的研究及开发应用[J].河南科学,2013,31(8):1151-1155.
    [9]杨振国,谢道燕,达爱斯,等.天然除虫菊素与丁醚脲复配对朱砂叶螨杀螨活性的影响[J].贵州农业科学,2016,44(11):56-60.
    [10]郑宜红,刑玉娟,王靖宇,等.5%除虫菊素加苦参碱水乳剂的研制[J].武汉轻工大学学报,2016,12(4):100-106.
    [11]刘雨晴,范毅,于立芹,等.天然苦皮藤素和天然除虫菊素混配对三种蚜虫的毒力及田间防效[J].植物保护,2014,40(2):175-178.
    [12]马卫宾,冯俊涛,江志利,等.6种植物精油对天然除虫菊素的增效活性研究[J].中华卫生杀虫药械.2013,6(19):193-195.
    [13]李杰,李雅菲,王再花,等.三种植物生长调节剂对除虫菊酯含量与产量相关性状的影响[J].热带作物学报,2014,35(6):1067-1070.
    [14]党小琳.除虫菊愈伤组织和发状根中除虫菊酯杀虫活性测定[J].中国农学通报,2016,32(23):55-58.
    [15]公冶祥旭,朱惠君,李群,等.除虫菊发状根的诱导及培养条件优化[J].植物科学学报,2017,35(3):427-434.
    [16] Reale S, Rasciani P, Pace L, et al. Volatile fingerprints of artemisinin-rich Artemisia annua cultivars by headspace solidphase micorextraxtion gas chromatography-mass spectrometry[J].Rapid Communications in Mass Spectrometry,2011,25(17):2511-2516.
    [17] Kikuta Y, Ueda H, Nakayama K, et al. Specific Regulation of Pyrethrin Biosynthesis in Chrysanthemum cinerariaefolium by a Blend of Volatiles Emitted from Artificially Damaged Conspecific Plants[J].Plant Cell Physiology,2011,52(3):588-596.
    [18] Zhong T, Yin J, Deng S, et al. Fluorescence competition assay for the assessment of green leaf volatiles and trans-beta-farnesene bound to three odorant-bingding proteins in the wheat aphids Sitobion avenae(Fabricius)[J].Journal of Insect Phyisology,2015,58(6):771-781.
    [19] Pickett JA., Wadhams LJ., Woodcock CM, et al. The Chemical Ecology of Aphids[J].Annual Review of Entomology,1992,37:67-90.
    [20] Erb M, Veyrat N, Robert CAM, et al. Indole is an essential herbivore-induced volatile priming signal in maize[J].Nature Communications,2015,6:6273.
    [21] Yu X, Zhang Y, Ma Y, et al. Expression of an(E)-beta-farnesene synthase gene from asian peppermint in tobacco affected aphids infestation[J].Crop Journal,2013,1:50-60.
    [22] Verheggen FJ, Haubruge E, De Moraes CM, et al. Aphid responses to volatile cues from turnip plants(Brassica rape)infested with phloem-feeding and chewing herbivores[J].Arthropod-Plant Interactions,2013,7(5):567-577.
    [23] Zhu JW, Cosse AA, Obrycki JJ, et al. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant:Electroantennogram and behavioral responses[J].Journal of Chemical Ecology,1999,25:1163-1177.
    [24] Acar EB, Medina JC, Lee ML, et al. Olfactory behavior of convergent lady beetles(Coleoptera:Coccinellidae)to alarm pheromone of green peach aphid(Hemiptera:Aphididae)[J].Canadian Entomologist,2001,33:389-397.
    [25] Verheggen FJ, Arnaud L, Bartram S, et al. Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly[J].Journal of Chemical Ecology,2008,34:301-307.
    [26] Cui LL, Francis F, Heus Kin S, et al. The functional significance of E-beta-Farnesene:does it influence the populations of aphid natural enemies in the fields?[J].Biological Control,2012,60(2):108-112.
    [27] Matsui K. Green leaf volatiles:hydroperoxide lyase pathway of oxylipin metabolism[J].Current Opinion in Plant Biology,2006,9:274-280.
    [28] Hassan MN, Zainal Z, Ismail I. Green leaf volatiles:biosynthesis,biological functions and their applications in biotechnology[J].Plant Biotechnology Journal,2015,13:727-739.
    [29] Hatano E, Kunert G, Michaud JP, et al. Chemical cues mediating aphid location by natural enemies[J].European Journal of Entomology,2008,105:797-806.
    [30] Gosset V, Harmel N, Gobel C, et al. Attacks by a piercing-sucking insect(Myzus persicae Sultzer)or a chewing insect(Leptinotarsa decemlineata Say)on potato plants(Solanum tuberosum L.)induce differential changes in volatile compound release and oxylipin synthesis[J].Journal of Experimental Botany,2009,60:1231-1240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700