用户名: 密码: 验证码:
不同工况下的薄壁件焊接装配热态特性数值仿真分析(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Welding thermal characteristics analysis with numerical simulation for thin-wall parts assembly under different conditions
  • 作者:潘明辉 ; 汤文成 ; 幸研
  • 英文作者:Pan Minghui;Tang Wencheng;Xing Yan;School of Mechanical Engineering,Southeast University;
  • 关键词:焊接装配 ; 薄壁件 ; 热态特性 ; 热源模型 ; 焊接方向
  • 英文关键词:welding assembly;;thin-wall parts;;thermal characteristics;;heat source model;;welding direction
  • 中文刊名:DNDY
  • 英文刊名:东南大学学报(英文版)
  • 机构:东南大学机械工程学院;
  • 出版日期:2018-06-15
  • 出版单位:Journal of Southeast University(English Edition)
  • 年:2018
  • 期:v.34
  • 基金:The National Natural Science Foundation of China(No.51675100);; the National Numerical Control Equipment Major Project of China(o.2016ZX04004008)
  • 语种:英文;
  • 页:DNDY201802009
  • 页数:9
  • CN:02
  • ISSN:32-1325/N
  • 分类号:64-72
摘要
为了分析薄壁件装配的焊接热态特性,针对不同厚度的T形装配结构,建立多尺度有限元模型和焊接热源模型,考虑不同焊接技术参数和焊接方向,采用不同焊缝参数的角焊缝方式对T形装配结构进行焊接仿真分析,研究不同工况下的焊接温度场分布情况.通过比较分析,结果表明:不同焊接方向、不同焊接厚度和焊接热源参数对焊接温度场分布有不同程度的影响;对相同厚度的薄壁件装配结构,当热源移动时,移动速度越快,受热面积越小,其焊接最高温度随之降低.通过适时调整焊接参数、热源参数、焊接结构厚度和焊接方向,可以改变焊接温度场分布状况,这将有利于选择合适的最佳薄壁件焊接厚度和相关的焊接过程参数,为以后大型尺寸焊接结构装配过程中提高薄壁焊接结构精度提供分析依据和基础.
        In order to analyze the welding thermal characteristics problem,the multiscale finite element( FE)model of T-shape thin-wall assembly structure for different thicknesses and the heat source model are established to emphatically study their welding temperature distributions under different conditions. Simultaneously,different welding technology parameters and welding directions are taken into account,and the fillet weld for different welding parameters is employed on the thin-wall parts. Through comparison analysis,the results show that different welding directions,welding thicknesses and welding heat source parameters have a certain impact on the temperature distribution. Meanwhile,for the thin-wall assembly structure of the same thickness,when the heat source is moving,the greater the moving speed,the smaller the heating area,and the highest temperature will decrease. Therefore,the welding temperature field distribution can be altered by adjusting welding parameters,heat source parameters,welding thickness and welding direction,which is conducive to reducing welding deformation and choosing an appropriate and optimal welding thickness of thin-wall parts and relative welding process parameters,thus improving thinwall welding structure assembly precision in the actual largesize welding structure assembly process in future.
引文
[1]Deng D,Murakawa H,Liang W.Numerical simulation of welding distortion in large structures[J].Computer Methods in Applied Mechanics&Engineering,2007,196(45/46/47/48):4613-4627.DOI:10.1016/j.cma.2007.05.023.
    [2]Ma N,Wang J,Okumoto Y.Out-of-plane welding distortion prediction and mitigation in stiffened welded structures[J].International Journal of Advanced Manufacturing Technology,2016,80(5):1371-1389.DOI:10.1007/s00170-015-7810-y.
    [3]Murakawa H,Deng D,Ma N,et al.Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J].Computational Materials Science,2012,51(1):43-52.DOI:10.1016/j.commatsci.2011.06.040.
    [4]Murakawa H,Okumoto Y,Rashed S,et al.A practical method for prediction of distortion produced on large thin plate structures during welding assembly[J].Welding in the World,2013,57(6):793-802.DOI:10.1007/s40194-013-0071-1.
    [5]Wang R,Zhang J,Serizawa H,et al.Study of welding inherent deformations in thin plates based on finite element analysis using interactive substructure method[J].Materials&Design,2009,30(9):3474-3481.DOI:10.1016/j.matdes.2009.03.015.
    [6]Moein H,Sattari-Far I.Different finite element techniques to predict welding residual stresses in aluminum alloy plates[J].Journal of Mechanical Science and Technology,2014,28(2):679-689.DOI:10.1007/s12206-013-1131-6.
    [7]Ikushima K,Itoh S,Takakura D,et al.Large-scale analysis of welding deformation and residual stress problem by idealized explicit FEM using iterative substructure method[J].Quarterly Journal of the Japan Welding Society,2014,32(4):223-234.DOI:10.2207/qjjws.32.223.
    [8]Ikushima K,Shibahara M.Large-scale non-linear analysis of residual stresses in multi-pass pipe welds by idealized explicit FEM[J].Welding in the World,2015,59(6):839-850.DOI:10.1007/s40194-015-0263-y.
    [9]Chen Z,Chen Z,Shenoi R A.Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure[J].Ocean Engineering,2015,106:271-280.DOI:10.1016/j.oceaneng.2015.07.013.
    [10]Choi W,Chung H.Variation simulation of compliant metal plate assemblies considering welding distortion[J].Journal of Manufacturing Science and Engineering,2015,137(3):031008.DOI:10.1115/1.4029755.
    [11]Joo S M,Bang H S,Bang H S,et al.Numerical investigation on welding residual stress and out-of-plane displacement during the heat sink welding process of thin stainless steel sheets[J].International Journal of Precision Engineering and Manufacturing,2016,17(1):65-72.DOI:10.1007/s12541-016-0009-9.
    [12]Zeng P,Gao Y,Lei L P.Local equivalent welding element to predict the welding deformations of plate-type structures[J].Science in China Series E:Technological Sciences,2008,51(9):1502-1506.DOI:10.1007/s11431-008-0114-9.
    [13]Huang H,Wang J,Li L,et al.Prediction of laser welding induced deformation in thin sheets by efficient numerical modeling[J].Journal of Materials Processing Technology,2016,227:117-128.DOI:10.1016/j.jmatprotec.2015.08.002.
    [14]C5ndea L,Haiegan C,Pop N,et al.The influence of thermal field in the electric arc welding of X60 carbon steel components in the CO2 environment[J].Applied Thermal Engineering,2016,103:1164-1175.DOI:10.1016/j.applthermaleng.2016.05.004.
    [15]Das H,Jana S S,Pal T K,et al.Numerical and experimental investigation on friction stir lap welding of aluminium to steel[J].Science and Technology of Welding and Joining,2014,19(1):69-75.DOI:10.1179/1362171813y.0000000166.
    [16]Okano S,Tsuji H,Mochizuki M.Temperature distribution effect on relation between welding heat input and angular distortion[J].Science and Technology of Welding and Joining,2016,22(1):59-65.DOI:10.1080/13621718.2016.1185313.
    [17]Goldak J,Chakravarti A,Bibby M.A new finite element model for welding heat sources[J].Metallurgical Transactions B,1984,15(2):299-305.
    [18]Bhatti A A,Barsoum Z,Murakawa H,et al.Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion[J].Materials and Design,2015,65:878-889.DOI:10.1016/j.matdes.2014.10.019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700