用户名: 密码: 验证码:
基于耦合传热的双脉冲发动机热防护层受热分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Study of Thermal Protection Layer in Dual Pulse Motor Based on Conjugate Heat Transfer Method
  • 作者:陈雄 ; 李映坤 ; 刘锐 ; 李宏文
  • 英文作者:CHEN Xiong;LI Ying-kun;LIU Rui;LI Hong-wen;School of Mechanical Engineering,Nanjing University of Science and Technology;Jinxi Industrial Co.,LTD.;
  • 关键词:双脉冲发动机 ; 耦合传热 ; 数值分析
  • 英文关键词:Dual pulse motor;;Conjugate heat transfer;;Numerical analysis
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京理工大学机械工程学院;晋西工业集团有限责任公司;
  • 出版日期:2015-12-31 14:52
  • 出版单位:推进技术
  • 年:2016
  • 期:v.37;No.223
  • 语种:中文;
  • 页:TJJS201601012
  • 页数:7
  • CN:01
  • ISSN:11-1813/V
  • 分类号:86-92
摘要
针对双脉冲软隔层通道孔径对双脉冲发动机I脉冲燃烧室热防护层热环境的影响开展了数值仿真研究。对雷诺平均Navier-Strokes方程采用了双时间步LU-SGS迭代方法、AUSMPW迎风格式以及适合模拟分离流动的改进剪切应力输运(SST)湍流模型进行求解,通过保证流固耦合界面上的热流密度连续来实现耦合传热仿真。采用算例验证了算法及程序的精度和可信度。计算结果表明:I脉冲燃烧室热防护层表面的对流换热系数随软隔层通道孔径的增大而减小,最大对流换热系数平均减幅达20.3%,再附着点位置和对流换热系数最大值所在位置均向上游移动,分别平均移动24.2%和23.1%;I脉冲燃烧室热防护层表面的对流换热系数先增大后减小,且回流区内的对流换热系数相对较小,并在再附着点上游达到最大值。
        The effects of the pulse separation device port diameter on heating environment of thermal insulation of the first pulse chamber in a dual pulse motor were simulated. The Reynolds-average Navier-Stokes equations were solved with dual time LU- SGS iterative algorithm, AUSMPW upwind scheme, modified shearstress-transport(SST) turbulence model which improved the capability of predicting separation. The conjugate heat transfer process was realized by keeping the heat flux on the fluid-solid interface to be consistent. The accuracy and reliability of the method and the code were verified by some experiment cases. The results show that with the increasing of pulse separation device port diameter,the local convective heat transfer coefficients of thermal insulation surface in the first pulse chamber decrease and the peak value decreases by 20.3%. Moreover,the position of the reattachment point and the peak value move upstream by 24.2% and 23.1% in average,respectively.The local convective heat transfer coefficients of thermal insulation surface in the first pulse motor increase firstly,and then decrease. The local convective heat transfer coefficients are low in the recirculation zone and reach the peak value upstream of the reattachment point.
引文
[1]王春光,田维平,杨德敏,等.脉冲发动机中隔层传热炭化模型[J].推进技术,2012,33(2):259-262.(WANG Chun-guang,TIAN Wei-ping,YANG Demin.Charring Model of Heat Transfer for Pulse Separation Device of Pulse Motor[J].Journal of Propulsion Technology,2012,33(2):259-262.)
    [2]王春光,田维平,任全彬,等.脉冲发动机中隔层工作过程的数值分析及试验[J].推进技术,2012,33(5):790-794.(WANG Chun-guang,TIAN Weiping,REN Quan-bin,et al.Numerical Analysis and Test on Work Process of Pulse Separation Device in Pulse Motor[J].Journal of Propulsion Technology,2012,33(5):790-794.)
    [3]Harold Dahl,Barry Jones.Demonstration of Solid Propellant Pulse Motor Technologies[R].AIAA 96-3157.
    [4]Chang-hui Wang,Yu Liu,Ya-Bing Liu.Design and Experimental Studies on Ceramic Port Cover for Dual Pulse Motor[J].Acta Astronautica,2011,68(11):1881–1890.
    [5]Schilling S,Trouillot P,Weigand A.On the Development and Testing of a 120mm Caliber Double Pulse Motor[R].AIAA 2004-3387.
    [6]Naumann K W,Stadler L.Double-Pulse Solid Rocket Motor Technology-Applications and Technical Solutions[R].AIAA 2010-6754.
    [7]Stadler L J,Huber J,Friedemann D,et al.The Double Pulse Motor Demonstrator MSA[R].AIAA 2010-6755.
    [8]Javed A,Manna P,Debasis Chakraborty.Numerical Simulation of a Dual Pulse Solid Rocket Motor Flow Field[J].Defence Science Journal,2012,62(6):369-374.
    [9]朱卫兵,张永飞,陈宏,等.双脉冲发动机内流场研究[J].弹箭与制导学报,2012,32(1):114-118.
    [10]刘亚冰,王长辉,刘宇.双脉冲发动机燃烧室局部烧蚀特性分析[J].固体火箭技术,2011,34(4):453-456.
    [11]孙娜,娄永春,孙长宏,等.某双脉冲发动机燃烧室两相流场数值分析[J].固体火箭技术,2012,35(3):335-338.
    [12]尹自宾,房雷.一种脉冲固体火箭发动机内流场数值分析[J].弹箭与制导学报,2014,34(2):101-104.
    [13]李映坤,韩珺礼,陈雄,等.级间通道构型对双脉冲发动机燃烧室局部受热的影响[J].推进技术,2014,35(11):1503-1510.(LI Ying-kun,HAN Junli,CHEN Xiong,et al.Effects of Two-Stage Pulse Channel Configurations on Local Heat Transfer Characteristics in Combustion Chamber of Dual Pulse Motor[J].Journal of Propulsion Technology,2014,35(11):1503-1510.)
    [14]张涵信,陈坚强,高树椿.H2/O2燃烧的超声速非平衡流动的数值模拟[J].宇航学报,1994,15(02):14-23.
    [15]Menter F R.Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J].AIAA Journal,1994,32(08):1598–1605.
    [16]甘文彪,周洲,许晓平,等.基于改进SST模型的分离流动数值模拟[J].推进技术,2013,34(5):595-602.(GAN Wen-biao,ZHOU Zhou,XU Xiaoping,et al.Investigation on Improving the Capability of Predicting Separation in Modified SST Turbulence Model[J].Journal of Propulsion Technology,2013,34(5):595-602.)
    [17]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [18]Kim K H,Kim C,Rho O H.Methods for the Accurate Computations of Hypersonic Flows(I.)AUSMPW+Scheme[J].Journal of Computational Physics,2001,174(1):38-80.
    [19]Dunlap R,Blackner A M,Waugh R C,et al.Internal Flow Field Studies in a Simulated Cylindrical Port Rocket Chamber[J].Journal of Propulsion and Power,1990,6(6):690-704.
    [20]Back L H,Massier P F,Gier H L.Convective Heat Transfer in a Convergent divergent Nozzle[J].International Journal of Heat and Mass Transfer,1964,7:549-568.
    [21]Vogel J C,Eaton J K.Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward Facing Step[J].Journal of Heat Transfer,1985,107(04):922-929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700