用户名: 密码: 验证码:
基于热流固耦合的架空管道方形补偿器有限元分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite Element Analysis of Square-Shaped Compensator for Overhead Pipeline Based on Thermal Fluid-Solid Coupling
  • 作者:黄思 ; 徐征南 ; 张聪 ; 牛琦锋 ; 林冠堂 ; 陈英红
  • 英文作者:HUANG Si;XU Zhengnan;ZHANG Cong;NIU Qifeng;LIN Guangtang;CHEN Yinghong;School of Mechanical and Automotive Engineering,South China University of Technology;Guangdong Institute of Special Equipment Inspection and Research Zhuhai Branch;
  • 关键词:架空管道 ; 方形补偿器 ; 热流固耦合 ; 有限元分析
  • 英文关键词:overhead pipeline;;square-shaped compensator;;thermal fluid-solid coupling;;finite element analysis
  • 中文刊名:CGGL
  • 英文刊名:Journal of Chongqing University of Technology(Natural Science)
  • 机构:华南理工大学机械与汽车工程学院;广东省特种设备检测研究院珠海检测院;
  • 出版日期:2019-04-15
  • 出版单位:重庆理工大学学报(自然科学)
  • 年:2019
  • 期:v.33;No.402
  • 基金:广东省质监局科技项目(2018CT23)
  • 语种:中文;
  • 页:CGGL201904008
  • 页数:6
  • CN:04
  • ISSN:50-1205/T
  • 分类号:55-60
摘要
以某化工园区的架空管道方形补偿器为研究对象,该补偿器管廊有10组立柱、4层管架及27根管道,输送不同温度和压力工况的流动介质。在考虑重力、介质温度、流动对管道作用力等因素的基础上,系统、完整地建立ANSYS有限元模型,并进行了热流固耦合计算,得到了架空管道方形补偿器的位移、轴力、剪力、弯矩及应力等参数分布,找出这些参数的最大值及其位置,对二次应力进行校核验算,判断了方形补偿器的可靠性。旨在探索一套针对复杂架空管道实际应用的安全风险评估方法,为架空管道的运行安全提供技术支持。
        In this study,the square-shaped compensator for the overhead pipeline in a chemical industrial park was selected as the research object. The pipeline gallery had 10 sets of support columns,4-layer pipe racks and 27 pipes to transport the flow medium in different temperature and pressure. By taking into account the factors such as gravity,medium temperature,flow force on the pipeline,etc,the ANSYS finite element model was established sophisticatedly to perform the thermal fluid-solid coupling calculation. The distributions of displacement,axial force,shear force,bending moment and stress of the square-shaped compensator were obtained. The maximum values and the corresponding positions in these distributions were found and analyzed. The reliability of the squareshaped compensator was judged by checking the secondary stresses. The study aims to explore a safety assessment method for the application of complex overhead pipelines,and to provide solid technical support for the safety operation of overhead pipelines.
引文
[1]高勋,崔荣帅,王智勇,等.关于管道方形补偿器的计算与安装[J].科技与企业,2016(6):224-225.
    [2]常守欣,王志栋.方形补偿器类型及应力分析验算[J].四川建材,2008,34(6):23-24.
    [3]李相通,田健,姜健龙,等.锅炉供水母管的方形补偿器选型及应力分析[J].电站系统工程,2016,32(3):44-46.
    [4]朱旭,霍龙,景延会,等.基于ANSYS软件的有限元分析[J].科技创新与生产力,2018(7):97-100.
    [5]周家来,李县准.悬臂工字梁荷载作用下的ANSYS有限元静力分析[J].山西建筑,2018,44(6):41-42.
    [6]刘文凯,王飞,王国伟,等.直埋弯管应力分析及AN-SYS的二次开发[J].中国科技论文,2018,13(11):1238-1243.
    [7]谭俊,高德芳,杨超.斜齿轮精确啮合模型的APDL建模方法[J].机械传动,2017,41(5):188-192.
    [8]徐鹏飞,王洪申,豆永坤.基于命令流方法实现ANSYS系统参数化建模[J].机械设计与制造工程,2017,46(4):51-53.
    [9]张冬梅,张世富,杨东宇,等.基于ANSYS的装配式管道海面铺设强度分析[J].重庆理工大学学报(自然科学),2018(9):76-81,90.
    [10]周平槐,杨学林.基于影响线的内支撑系统截面优化设计[J].建筑结构,2017,47(6):80-85.
    [11]GUAN C S,WAN Z.The simulation study on buried ground-source heat pipe transient temperature field distribution[J].Advanced Materials Research,2012,383-390:6621-6625.
    [12]李程.热力管网中补偿器与支架位置优化的研究[D].北京:北京建筑大学,2017.
    [13]杨秀忠.浅析补偿器及支架的布置方式对热力管道安全运行的影响[J].新疆石油科技,2018,28(2):65-68.
    [14]徐君臣,吴云龙,张文杰.高温管道限位支撑结构的热力耦合分析及结构改进[J].压力容器,2017(12):32-38.
    [15]薛景宏,储阳华.温度作用下变径管道的应力应变分析[J].重庆理工大学学报(自然科学),2017(8):51-56.
    [16]蔡增基,龙天渝.流体力学泵与风机[M].4版.北京:中国建筑工业出版社,1999.
    [17]秦小刚,王银璞,张成藩,等.正确计算方形补偿器安装冷拉值的公式[J].石油和化工设备,2012(8):38-40.
    [18]中华人民共和国电力行业标准DL/T5366-2006火力发电厂汽水管道应力计算技术规程[M].北京:中国电力出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700