用户名: 密码: 验证码:
CO_2羽流地热系统热开采过程热流固耦合模型及数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of thermal-hydrologic-mechanical numerical simulation model on CO_2 plume geothermal system
  • 作者:李静岩 ; 刘中良 ; 周宇 ; 李艳霞
  • 英文作者:LI Jingyan;LIU Zhongliang;ZHOU Yu;LI Yanxia;Beijing University of Technology, College of Environmental and Energy Engineering, Education Ministry Key Laboratory of Enhanced Heat Transfer and Energy Conservation;
  • 关键词:岩层 ; 热储 ; 热流固耦合 ; 二氧化碳 ; 地热系统 ; 多孔介质 ; 数值模拟
  • 英文关键词:rock formation;;geothermal reservoir;;THM coupling;;carbon dioxide;;geothermal system;;porous media;;numerical simulation
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:北京工业大学环境与能源工程学院传热强化与过程节能教育部重点实验室;
  • 出版日期:2018-11-13 11:32
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 语种:中文;
  • 页:HGSZ201901009
  • 页数:11
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:82-92
摘要
建立了CO_2羽流地热系统(CPGS)热开采过程的热流固(THM)耦合模型,结合五点布井方案和多岩层三维几何模型,对一理想热储进行CPGS热开采数值模拟。分析了CPGS热开采过程中热储内的岩体变形特征及其对系统采热性能的影响,并研究了THM耦合下热储初始孔隙率对CPGS热开采的影响。结果表明:CPGS的运行会引起岩体的冷却收缩,造成热储表观体积的减小和热储孔隙率的增大,这有助于提高热储渗透率,加快地热开采速率,从而对地热开采产生积极影响。初始孔隙率越小,岩体变形对热开采的影响越明显。在假设初始渗透率相同的情况下,初始孔隙率越小,岩体变形引起的渗透率增幅越大,系统的热开采速率越快。
        A thermal-hydrologic-mechanical(THM) coupling model during the carbon dioxide plume geothermal system(CPGS) heat exploitation process was established. An ideal geothermal reservoir geothermal exploitation process was studied numerically, which combined with five-spot well pattern and a three-dimensional multi-rock formation geometric model. The rock deformation performance of CPGS geothermal exploitation process and the influence of rock deformation and geothermal reservoir initial porosity to CPGS heat exploitation were studied. The results showed that the rock significantly shrinkages during the process of the CPGS operation, reduces the volume,and increases the porosity of the reservoir. The deformation also helps increasing the permeability of thermalreservoir, accelerating the rate of exploitation process, and thus enhancing the geothermal exploitation process.While the porosity was lower, the influence of rock deformation was more obvious. Under the consumption that theinitial permeability is the same, the smaller the initial porosity, the greater the increase in permeability caused by rock deformation, and the faster the thermal recovery rate of the system.
引文
[1] Holloway S. Storage of fossil fuel-derived carbon dioxide beneath the surface of the Earth[J]. Annual Review Energy Environment,2001, 26:145-166.
    [2] West J M, Pearce J, Bentham M, et al. Issue profile:environmental issues and the geological storage of CO2[J].European Environment, 2005, 15:250-259.
    [3] Gentzis T. Subsurface sequestration of carbon dioxide—an overview from an Alberta(Canada)perspective[J]. International Journal of Coal Geology, 2000, 43:287-305.
    [4] Gough C. State of the art in carbon dioxide capture and storage in the UK:an experts.review[J]. International Journal of Greenhouse Gas Control, 2008, 2:155-168.
    [5] Holloway S. Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option[J]. Energy, 2005, 30:2318-2333.
    [6] Metz B, Davidson O R, Bosch P R, et al. Contribution of working groupⅢto the fourth assessment report of the intergovernmental panel on climate change[R]. Cambridge:Cambridge University Press, 2007.
    [7] Brown D. A hot dry rock geothermal energy concept utilizing supercritical CO2instead of water[C]//Proceedings of the Twentyfifth Workshop on Geothermal Reservoir Engineering. Stanford,2000:233-238.
    [8] Pruess K. Enhanced geothermal systems(EGS)using CO2as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006,35:351-367.
    [9] Pruess K. Enhanced geothermal systems(EGS)comparing water with CO2as heat transmission fluids[R]. Berkeley:Lawrence Berkeley National Laboratory, 2007.
    [10] Pruess K. On the feasibility of using supercritical CO2as heat transmission fluid in an engineered hot dry rock geothermal system[C]//Proceedings of the Thirty-first Workshop on Geothermal Reservoir Engineering. Stanford, 2006.
    [11] Pruess K. On production behavior of enhanced geothermal systems with CO2as working fluid[J]. Energy Conversion and Management, 2008, 49(6):1446-1454.
    [12] Majer E L, Baria R, Stark M, et al. Induced seismicity associated with enhanced geothermal systems[J]. Geothermics, 2007, 36:185-222.
    [13] Randolpha J B, Saar M O. Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations:a comparison with enhanced geothermal systems[J]. GRC Trans., 2010, 34:433-438.
    [14] Randolpha J B, Saar M O. Combining geothermal energy capture with geologic carbon dioxide sequestration[J]. Geophysical Research Letters, 2011, 38:L10401.
    [15] Randolpha J B, Saar M O. Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations:implications for CO2sequestration[J]. Energy Procedia, 2011, 4:2206-2213.
    [16] Zhang L, Ezekiel J, Li D, et al. Potential assessment of CO2injection for heat mining and geological storage in geothermal reservoirs of China[J]. Applied Energy, 2014, 122:237-246.
    [17] Xu T, Feng G, Shi Y. On fluid-rock chemical interaction in CO2-based geothermal systems[J]. Journal of Geochemical Exploration,2014, 144:179-193.
    [18] Ghassemi A, Zhou X. A three-dimensional thermo-poroelastic model for fracture response to injection/extraction in enhanced geothermal systems[J]. Geothermics, 2011, 40(1):39-49.
    [19] Koh J, Roshan H, Rahman S S. A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs[J]. Computers and Geotechnics, 2011, 38(5):669-682.
    [20] Jing Y, Jing Z, Willis-Richards J, et al. A simple 3-D thermoelastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir[J]. Journal of Volcanology&Geothermal Research, 2014, 269:14-22.
    [21]曹文炅,黄文博,蒋方明.地下热流固耦合对EGS热开采的影响[J].新能源进展, 2015, 3(6):444-451.Cao W J, Huang W B, Jiang F M. The thermal-hydraulicmechanical coupling effects on heat extraction of enhanced geothermal systems[J]. Journal of Circuits and Systems, 2015, 3(6):444-451.
    [22] Hicks T W, Pine R J, Willis-Richards J, et al. A hydro-thermomechanical numerical model for HDR geothermal reservoir evaluation[J]. International Journal of Rock Mechanics&Mining Sciences&Geomechanics Abstracts, 1996, 33(5):499-511.
    [23] Taron J, Elsworth D. Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5):855-864.
    [24] Taron J, Elsworth D, Min K B. Numerical simulation of thermalhydrologic-mechanical-chemical processes in deformable,fractured porous media[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5):842-854.
    [25] McDermott C I, Randriamanjatosoa A R L, Tenzer H, et al.Simulation of heat extraction from crystalline rocks:the influence of coupled processes on differential reservoir cooling[J].Geothermics, 2006, 35(3):321-344.
    [26]李静岩,刘中良,周宇,等.热储上下岩层热补偿作用对CO2羽流地热系统性能的影响[J].化工学报, 2017, 68(12):4526-4536.Li J Y, Liu Z L, Zhou Y, et al. Influence of thermal compensation of geothermal reservoir rock formation on CO2plume geothermal system performance[J]. CIESC Journal, 2017, 68(12):4526-4536.
    [27] Fagerlund F F, Niemi A, Oden M. Comparison of relative permeability-fluid saturation-capillary pressure relations in the modelling of non-aqueous phase liquid infiltration in variably saturated,layered media[J]. Advances in Water Resources, 2006,29(11):1705-1730.
    [28]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展, 2003, 18(4):419-426Li P C, Kong X Y, Lu D T. Mathematical modeling of flow in saturated porous media on account of fluid-solid coupling effect[J]. Journal of Hydrodynamics, 2003, 18(4):419-426.
    [29]戴永浩,陈卫忠,伍国军,等.非饱和岩体弹塑性损伤模型研究与应用[J].岩石力学与工程学报, 2008, 27(4):728-735.Dai Y H, Chen W Z, Wu G J, et al. Study on elastoplastic damage model of unsaturated rock mass and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4):728-735.
    [30]魏铭聪,杨冰,许天福,等.二氧化碳羽流地热系统中井间距和储层渗透率对热提取率的影响:以松辽盆地为例[J].地质科技情报, 2015, 34(2):188-193.Wei M C, Yang B, Xu T F, et al. Effects of well spacing and reservoir permeability on heat extraction in CO2plume geothermal system:a case study of Songliao Basin[J]. Geological Science and Technology Information, 2015, 34(2):188-193.
    [31]杨艳林,靖晶,王福刚,等. CO2增强型地热系统中的井网间距优化研究[J].太阳能学报, 2014,(7):1130-1137.Yang Y L, Jing J, Wang F G, et al. Optimal design of well spacing on CO2enhanced geothermal[J]. Acta Energiae Solaris Sinica,2014,(7):1130-1137.
    [32]张俊虎,刘君.煤层气井网布置优化设计的探讨[J].科技情报开发与经济, 2008,(10):210-212.Zhang J H, Liu J. Probe into the optimal design of coal-bed methane well network[J]. Sci-tech Information Development&Economy, 2008,(10):210-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700