用户名: 密码: 验证码:
电磁场和电场改善鱼糜制品凝胶特性的机制及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Mechanism of Electromagnetic and Electric Fields to Improve the Gel Properties of Surimi Products and Their Application
  • 作者:范大明 ; 焦熙栋
  • 英文作者:Fan Daming;Jiao Xidong;State Key Laboratory of Food Science and Technology,Jiangnan University;Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing,Ministry of Agriculture and Rural Affairs;School of Food Science and Technology,Jiangnan University;
  • 关键词:电磁场 ; 电场 ; 微波 ; 欧姆加热 ; 鱼糜 ; 凝胶特性
  • 英文关键词:electromagnetic field;;electric field;;microwave;;ohmic heating;;surimi;;gel properties
  • 中文刊名:ZGSP
  • 英文刊名:Journal of Chinese Institute of Food Science and Technology
  • 机构:江南大学食品科学与技术国家重点实验室;农业农村部冷冻调理水产品加工重点实验室;江南大学食品学院;
  • 出版日期:2019-01-31
  • 出版单位:中国食品学报
  • 年:2019
  • 期:v.19
  • 基金:国家自然科学基金-优秀青年科学基金项目(31822038);; 农业农村部冷冻调理水产品加工重点实验室开放课题(KLRCAPP2018-01)
  • 语种:中文;
  • 页:ZGSP201901001
  • 页数:11
  • CN:01
  • ISSN:11-4528/TS
  • 分类号:7-17
摘要
热处理是鱼糜凝胶形成的重要途径之一,传统的热处理主要依靠传热介质进行蒸煮和烤制加热,然而此类方法普遍存在热效率低,污水量大,耗时较长等诸多问题。目前国内外已有部分研究表明微波、欧姆加热等电磁场和电场热处理方式,具有解决上述问题的优势和相近机制。本文通过探讨鱼糜对电磁场和电场的能量吸收问题,挖掘电磁场和电场对内外源组分及凝胶品质的干预机制,综述电磁场和电场加工技术在改善鱼糜凝胶特性,提高加工效率以及行业应用等方面的情况,以期为新型物理场技术在鱼糜加工业中的应用提供参考。
        Heat treatment is one of the important approaches for surimi gel formation. The traditional heating methods mainly rely on the heat transfer medium through steaming, boiling and baking heating, but such methods generally have many problems such as low thermal efficiency, large sewage production and time-consuming. Currently, numerous studies at home and abroad have shown that microwave, ohmic heating and other electromagnetic and electric heating methods have the unique advantages and similar mechanisms to solve the above problems. In this review, the energy absorption of surimi, intervention mechanism of electromagnetic and electric fields on endogenous or exogenous components and gel quality were summarized. This paper provides an overview of the application of electromagnetic and electric fields in improvement of surimi gel properties, processing efficiency and their industrial application, aiming at providing reference for application of new physical fields technology in surimi manufacturing.
引文
[1] SAMPELS S. The effects of processing technologies and preparation on the final quality of fish products[J]. Trends in Food Science&Technology, 2015,44(2):131-146.
    [2]农业部渔业渔政管理局. 2018中国渔业统计年鉴[M].北京:中国农业出版社, 2018:89.
    [3] PARK J W, LIN T M, YONGSAWATDIGUL J.New developments in manufacturing of surimi and surimi seafood[J]. Food Reviews International, 1997,13(4):577-610.
    [4] LEE C M. Recent advances in surimi technology[J].Fisheries Science, 2002, 68(sup2):1523-1528.
    [5] SKAARA T, REGENSTEIN J M. The structure and properties of myofibrillar proteins in beff, pooultry,and fish[J]. Journal of Muscle Foods, 1990, 1(4):269-291.
    [6] RAM魱REZ J A, URESTI R M, VELAZQUEZ G, et al. Food hydrocolloids as additives to improve the mechanical and functional properties of fish products:A review[J]. Food Hydrocolloids, 2011, 25(8):1842-1852.
    [7] BENJAKUL S, VISESSANGUAN W. Transglutaminase-mediated setting in bigeye snapper surimi[J].Food Research International, 2003, 36(3):253-266.
    [8] BENJAKUL S, CHANTARASUWAN C, VISESSANGUAN W. Effect of medium temperature setting on gelling characteristics of surimi from some tropical fish[J]. Food Chemistry, 2003, 82(4):567-574.
    [9] SINGH A, BENJAKUL S. Proteolysis and its control using protease inhibitors in fish and fish products:A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(2):496-509.
    [10] YU N, XU Y, JIANG Q, et al. Molecular forces involved in heat-induced freshwater surimi gel:Effects of various bond disrupting agents on the gel properties and protein conformation changes[J]. Food Hydrocolloids, 2017, 69:193-201.
    [11] FERRY J D. Protein gels1[J]. Advances in Protein Chemistry, 1948, 4:1-78.
    [12] CAMOU J P, SEBRANEK J G, OLSON D G. Effect of heating rate and protein concentration on gel strength and water loss of muscle protein gels[J].Journal of Food Science, 1989, 54(4):850-854.
    [13] FOEGEDING E A, ALLEN C E, DAYTON W R.Effect of heating rate on thermally formed myosin,fibrinogen and albumin gels[J]. Journal of Food Science, 1986, 51(1):104-108.
    [14] YOON W B, PARK J W. Development of linear heating rates using conventional baths and computer simulation[J]. Journal of Food Science, 2001, 66(1):132-136.
    [15] HERMANSSON A M. Physico-chemical aspects of soy proteins structure formation[J]. Journal of Texture Studies, 1978, 9(1/2):33-58.
    [16] RIEMANN A E, LANIER T C, SWARTZEL K R.Rapid heating effects on gelation of muscle proteins[J]. Journal of Food Science, 2004, 69(7):308-314.
    [17] YONGSAWATDIGUL J, PARK J W. Thermal aggregation and dynamic rheological properties of Pacific whiting and cod myosins as affected by heating rate[J]. Journal of Food Science, 1999, 64(4):679-683.
    [18] SUN X, HOLLEY R A. Factors influencing gel formation by myofibrillar proteins in muscle foods[J].Comprehensive Reviews in Food Science and Food Safety, 2011, 10(1):33-51.
    [19] CHANDRASEKARAN S, RAMANATHAN S, BASAK T. Microwave food processing-A review[J]. Food Research International, 2013, 52(1):243-261.
    [20] YAMAGUCHI Z. About the microwave heating equipment for kamaboko[J]. New Food Industry, 1982,24:1-5.
    [21] IKEDA T, ENAMI Y. Continuous type of forming device heated with microwave:JP19790051621[P].1979-04-25.
    [22] NAKAI K. Apparatus for producing Chikuwa:JP8061853[P]. 1996-02-22.
    [23] DAVIDOVICH L, PIGOTT G. The use of microwave power in the fabrication of"kamaboko"[J]. Journal of Microwave Power, 1982, 17(4):335-340.
    [24] MAO W, FUKUOKA M, SAKAI N. Gel strength of kamaboko gels produced by microwave heating[J].Food Science and Technology Research, 2006, 12(4):241-246.
    [25] LIU X, FENG D, JI L, et al. Effects of microwave heating on the gelation properties of heat-induced Alaska pollock(Theragra chalcogramma)surimi[J].Food Science and Technology International, 2018,24(6):497-506.
    [26] YAMAZAWA M. Effect of hight temperature heating on physical properties of kamaboko-gel[J]. Nippon Suisan Gakkaishi, 1990, 56:497-503.
    [27] STEVENSON C D, LIU W, LANIER T C. Rapid heating of Alaska pollock and chicken breast myofibrillar protein gels as affecting water-holding properties[J]. Journal of Agricultural and Food Chemistry, 2012, 60(40):10111-10117.
    [28] LIU W, STEVENSON C D, LANIER T C. Rapid heating of Alaska pollock and chicken breast myofibrillar proteins as affecting gel rheological properties[J]. Journal of Food Science, 2013, 78(7):C971-C977.
    [29]闫虹,林琳,叶应旺,等.两种微波加热处理方式对白鲢鱼糜凝胶特性的影响[J].现代食品科技,2014, 30(4):196-204.
    [30] CAO H, FAN D, JIAO X, et al. Effects of microwave combined with conduction heating on surimi quality and morphology[J]. Journal of Food Engineering, 2018, 228:1-11.
    [31] CAO H, FAN D, JIAO X, et al. Heating surimi products using microwave combined with steam methods:Study on energy saving and quality[J]. Innovative Food Science&Emerging Technologies,2018, 47:231-240.
    [32] CAO H, FAN D, JIAO X, et al. Intervention of transglutaminase in surimi gel under microwave irradiation[J]. Food Chemistry, 2018, 268:378-385.
    [33] FU X, HAYAT K, LI Z, et al. Effect of microwave heating on the low-salt gel from silver carp(Hypophthalmichthys molitrix)surimi[J]. Food Hydrocolloids, 2012, 27(2):301-308.
    [34] MATSUDA S, KONAGAYA H. Preparation of boiled fish paste using microwave heating and far infrared heating:JP19900118097[P]. 1990-05-08.
    [35] LOPEZ-GAVITO L, PIGOTT G. Effects of microwave cooking on textural characteristics of battered and breaded fish products[J]. Journal of Microwave Power, 1983, 18(4):345-353.
    [36]范大明,黄建联,焦熙栋,等.一种利用微波加热提高鱼糜制品油炸过程上色效率的方法[P]. 2017-05-03.
    [37] MARRA F, ZHANG L, LYNG J G. Radio frequency treatment of foods:Review of recent advances[J].Journal of Food Engineering, 2009, 91(4):497-508.
    [38] UYAR R, BEDANE T F, ERDOGDU F, et al.Radio-frequency thawing of food products-A computational study[J]. Journal of Food Engineering, 2015,146:163-171.
    [39] LAYCOCK L, PIYASENA P, MITTAL G S. Radio frequency cooking of ground, comminuted and muscle meat products[J]. Meat Science, 2003, 65(3):959-965.
    [40] BRUNTON N P, LYNG J G, LI W, et al. Effect of radio frequency(RF)heating on the texture,colour and sensory properties of a comminuted pork meat product[J]. Food Research International, 2005,38(3):337-344.
    [41] KIRMACI B, SINGH R K. Quality of chicken breast meat cooked in a pilot-scale radio frequency oven[J]. Innovative Food Science&Emerging Technologies, 2012, 14:77-84.
    [42] ZHAO Y, FLUGSTAD B, KOLBE E, et al. Using capacitive(radio frequency)dielectric heating in food processing and preservation-a review[J]. Journal of Food Process Engineering, 2000, 23(1):25-55.
    [43] YANG H, CHEN Q, CAO H, et al. Radiofrequency thawing of frozen minced fish based on the dielectric response mechanism[J]. Innovative Food Science&Emerging Technologies, 2018, 52:80-88.
    [44] YILDIZ-TURP G, SENGUN I Y, KENDIRCI P, et al. Effect of ohmic treatment on quality characteristic of meat:A review[J]. Meat Science, 2013, 93(3):441-448.
    [45] SHIBA M. Properties of kamaboko gels prepared by using a new heating apparatus[J]. Nippon Suisan Gakkaishi, 1992, 58(5):895-901.
    [46] SHIBA M, NUMAKURA T. Quality of heated gel from walleye pollack surimi by applying joule heat[J].Nippon Suisan Gakkaishi, 1992, 58(5):903-907.
    [47] SHIBA M. Quality of kamaboko from vacuum-treated salt ground meat from several fish by applying joule heat[J]. Nippon Suisan Gakkaishi, 1993, 59(6):1007-1011.
    [48] ABUDAGGA Y, KOLBE E. Analysis of heat transfer in surimi paste heated by conventional and ohmic means[J]. Journal of Aquatic Food Product Technology, 2000, 9(2):43-54.
    [49] CHOI W S, LEE C H. Large and small deformation studies of ohmic and water-bath heated surimi gel by TPA and creep test[J]. Food Science and Biotechnology, 2006, 15(3):409-412.
    [50] YONGSAWATDIGUL J, PARK J W, KOLBE E, et al. Ohmic heating maximizes gel functionality of Pacific whiting surimi[J]. Journal of Food Science,1995, 60(1):10-14.
    [51] YONGSAWATDIGUL J, PARK J W. Linear heating rate affects gelation of Alaska pollock and Pacific whiting Surimi[J]. Journal of Food Science, 1996,61(1):149-153.
    [52] TADPITCHAYANGKOON P, PARK J W, YONGSAWATDIGUL J. Gelation characteristics of tropical surimi under water bath and ohmic heating[J]. LWT-Food Science and Technology, 2012, 46(1):97-103.
    [53] YONGSAWATDIGUL J, PARK J W, KOLBE E.Degradation kinetics of myosin heavy chain of Pacific whiting surimi[J]. Journal of Food Science, 1997,62(4):724-728.
    [54] YONGSAWATDIGUL J, PARK J W, KOLBE E.Texture degradation kinetics of gels made from Pacific whiting surimi[J]. Journal of Food Process Engineering, 1997, 20(6):433-452.
    [55] YOON W B, GUNASEKARAN S, PARK J W.Characterization of thermorheological behavior of Alaska pollock and Pacific whiting surimi[J]. Journal of Food Science, 2004, 69(7):338-343.
    [56] YIN T, PARK J W. Optimum processing conditions for slowly heated surimi seafood using proteaseladen Pacific whiting surimi[J]. LWT-Food Science and Technology, 2015, 63(1):490-496.
    [57] ONIBALA H, TAKAYAMA T, SHINDO J, et al.Effect of heating rate on reduction of himodoriin heat-induced gel of fish pastes[J]. Fisheries Science,1997, 63(2):272-275.
    [58] PONGVIRATCHAI P, PARK J W. Electrical conductivity and physical properties of surimi-potato starch under ohmic heating[J]. Journal of Food Science, 2007, 72(9):E503-E507.
    [59] YONGSAWATDIGUL J, PARK J W, KOLBE E.Electrical conductivity of Pacific whiting surimi paste during ohmic heating[J]. Journal of Food Science,1995, 60(5):922-925.
    [60] PONGVIRATCHAI P, PARK J W. Physical properties of fish proteins cooked with starches or protein additives under ohmic heating[J]. Journal of Food Quality, 2007, 30(5):783-796.
    [61] MOON J H, YOON W B, PARK J W. Assessing the textural properties of Pacific whiting and Alaska pollock surimi gels prepared with carrot under various heating rates[J]. Food Bioscience, 2017, 20:12-18.
    [62] FOWLER M R, PARK J W. Effect of salmon plasma protein on Pacific whiting surimi gelation under various ohmic heating conditions[J]. LWT-Food Science and Technology, 2015, 61(2):309-315.
    [63] LORAND L. Crosslinks in blood:transglutaminase and beyond[J]. The FASEB Journal, 2007, 21(8):1627-1632.
    [64] FOWLER M R, PARK J W. Salmon blood plasma:Effective inhibitor of protease-laden Pacific whiting surimi and salmon mince[J]. Food Chemistry, 2015,176:448-454.
    [65] YIN T, PARK J W. Textural and rheological properties of Pacific whiting surimi as affected by nanoscaled fish bone and heating rates[J]. Food Chemistry, 2015, 180:42-47.
    [66] LEE M G, YOON W B, PARK J W. Combined effect of pH and heating conditions on the physical properties of Alaska pollock surimi gels[J]. Journal of Texture Studies, 2017, 48(3):215-220.
    [67] UEMURA K, NOGUCHI A, PARK S J, et al.Ohmic heating of food materials effects of frequency on the heating rate of fish protein[M]. Developments in Food Engineering. Boston:Springer, 1994:310-312.
    [68] PARK S J, KIM D, UEMURA K, et al. Influence of frequency on ohmic heating of fish protein gel[J].Nippon Shokuhin Kagaku Kogaku Kaishi, 1995, 48(8):569-574.
    [69] WU H, KOLBE E, FLUGSTAD B, et al. Electrical properties of fish mince during multi‐frequency ohmic heating[J]. Journal of Food Science, 1998, 63(6):1028-1032.
    [70] ZHAO Y, KOLBE E, FLUGSTAD B. A method to characterize electrode corrosion during ohmic heating[J]. Journal of Food Process Engineering, 1999, 22(1):81-89.
    [71] BHATKAR M A, JOSHI V R, BALAM M B. Effect of microwave pasteurisation on the quality of fish chikuwa[J]. Journal of the Indian Fisheries Association, 2002, 29:93-101.
    [72] GROPPER M, RAMON O, KOPELMAN I J, et al.Effects of microwave reheating on surimi gel texture[J]. Food Research International, 1997, 30(10):761-768.
    [73] MIAO Y, CHEN J Y, NOGUCHI A. Studies on the ohmic thawing of frozen surimi[J]. Food Science and Technology Research, 2007, 13(4):296-300.
    [74] KANJANAPONGKUL K, TIA S, WONGSA-NGASRI P, et al. Coagulation of protein in surimi wastewater using a continuous ohmic heater[J]. Journal of Food Engineering, 2009, 91(2):341-346.
    [75] JIN Y, CHENG Y D, FUKUOKA M, et al. Electrical conductivity of Yellowtail(Seriola quinqueradiata)fillets during ohmic heating[J]. Food and Bioprocess Technology, 2015, 8(9):1904-1913.
    [76] CAO H, FAN D, JIAO X, et al. Importance of thickness in electromagnetic properties and gel characteristics of surimi during microwave heating[J].Journal of Food Engineering, 2019, 248:80-88.
    [77] JI L, XUE Y, ZHANG T, et al. The effects of microwave processing on the structure and various quality parameters of Alaska pollock surimi proteinpolysaccharide gels[J]. Food Hydrocolloids, 2017,63:77-84.
    [78] PARK J W. Surimi and surimi seafood[M]. Florida:CRC Press, 2013:262-590.
    [79] ZHU Z, LANIER T C, FARKAS B E. High pressure effects on heat-induced gelation of threadfin bream(Nemipterus spp.)surimi[J]. Journal of Food Engineering, 2015, 146:23-27.
    [80] LIN X, YANG W, XU D, et al. Effect of electron irradiation and heat on the structure of hairtail surimi[J]. Radiation Physics and Chemistry, 2015, 114:50-54.
    [81] DENG S, LV L, YANG W, et al. Effect of electron irradiation on the gel properties of Collichthys lucidus surimi[J]. Radiation Physics and Chemistry,2017, 130:316-320.
    [82] AMIRI A, SHARIFIAN P, SOLTANIZADEH N.Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins[J]. International Journal of Biological Macromolecules, 2018, 111:139-147.
    [83] ZHANG H, WEI W, WANG H, et al. Effect of ebeam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi[J]. Radiation Physics and Chemistry, 2017, 130:436-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700