用户名: 密码: 验证码:
含弱约束结构受限空间甲烷爆炸及传播特征实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on the characteristics of methane explosion and propagation in closed space with weak constraint structure
  • 作者:王亚军 ; 蒋曙光 ; 王磊 ; 邵昊 ; 吴征艳 ; 王凯
  • 英文作者:WANG Yajun;JIANG Shuguang;WANG Lei;SHAO Hao;WU Zhenyan;WANG Kai;School of Safety Engineering,China University of Mining & Technology;School of Safety Engineering,Heilongjiang University of Science and Technology;State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine;State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology;
  • 关键词:弱约束 ; 甲烷爆炸 ; 火焰 ; 压力 ; 传播
  • 英文关键词:weak constraint;;methane explosion;;flame;;pressure;;propagation
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学安全工程学院;黑龙江科技大学安全工程学院;深部煤矿采动响应与灾害防控国家重点实验室;煤炭资源与安全开采国家重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.293
  • 基金:国家重点研发计划资助项目(2017YFC0805201);; 黑龙江省自然科学青年基金资助项目(QC2015054);; 深部煤矿采动响应与灾害防控国家重点实验室资助项目(KLDCMERDPC16102)
  • 语种:中文;
  • 页:MTXB201902018
  • 页数:7
  • CN:02
  • ISSN:11-2190/TD
  • 分类号:158-164
摘要
为研究含弱约束受限空间内甲烷爆炸压力升高及沿扩散管的传播特征,对不同体积分数甲烷的爆炸特征参数进行了系列实验。获得了含弱约束结构受限空间在不同浓度甲烷爆炸时的压力升高规律,研究表明,含弱约束受限空间内的甲烷爆炸压力升高趋势类似封闭空间,但压力峰值远小于封闭空间,封闭空间最大压力是含弱约束结构空间的3. 2倍。由于弱约束结构的存在,甲烷体积分数较低时破膜压力较大,腔体内高压持续时间较短,而接近爆炸当量浓度时腔体内高压持续时间增长。扩散管中的爆炸压力和火焰传播规律随甲烷体积分数变化呈现明显不同。在实验条件下,当甲烷体积分数低于7. 0%时,破膜激波与火焰锋面时间差最大为5. 255 ms,扩散管中的火焰主要为膨胀火焰。而甲烷体积分数高于7. 4%时,破膜激波与火焰锋面时间差为28~40 ms,说明在管外发生了二次爆炸,以湍流火焰为主。爆炸压力的沿管道传播则分为3种情况,甲烷体积分数低于7. 0%时,爆炸压力随传播距离增大而减小;甲烷体积分数为7. 4%和11. 0%时,爆炸压力随传播距离增大呈线性增大;甲烷浓度为当量浓度时,其压力传播特征类似于全管道甲烷爆炸的特征,随传播距离呈现锯齿形增大。实验结论对天然气长输管道、LNG和CNG储罐检修过程中的爆炸事故预防和含弱约束结构的其他气体泄爆具有参考意义。
        In order to study the characteristics of methane explosion pressure rise in confined space with weak constraint and its propagation along the diffusion tube. A series of experiments were carried out on the characteristic parameters of methane explosion at different volume fraction. The regularity of pressure increase in the confined space with weak constraint structure with different volume fraction of methane explosion was obtained. The research shows that the rise characteristic of methane explosion pressure in the space with the weak constraint is similar to the closed space,but the peak pressure is much smaller than the closed space.The maximum pressure of the fully enclosed space is 3.2 times higher than the structure space with weak constraint.Due to the existence of constraint structure,when the volume fraction of methane is low,the blasting pressure is high,and the duration of high pressure in the cavity is short,while the duration of high pressure in the cavity increases when the concentration is close to the explosion equivalent.The propagation law of explosion pressure and flame in diffusion tube after film breaking was also obviously different as the change of methane volume fraction.Under the experimental conditions,when the methane concentration is low than7.0%,the maximum time difference between the burst shock wave and the flame front is 5.255 ms. The flame in the diffusion tube is mainly the expansive flame.Nevertheless when the methane concentration is high than 7.4%,the time difference is 28-40 ms.It suggests a second explosion of methane in the pipe,and the flame is mainly the turbulent flame.The propagation of explosion pressure can be divided into three situations. When the methane concentration is lower than 7.0%,the explosion pressure decreases with the increase of propagation distance. When the methane concentration is 7.4% and 11.0%,the explosion pressure increases linearly with the propagation distance.When the methane concentration is equivalent,its pressure propagation characteristics are identical to those of the gas explosion in the whole pipeline.The explosion pressure increases zigzag with propagation distance.The experimental results have reference significance for the prevention of explosion accidents and other gas burst with weak restrained structure during the overhaul of long gas pipeline,LNG and CNG storage tanks.
引文
[1] CAMMAROTA F,BENEDETTO A D,RUSSO P,et al.Experimental analysis of gas explosions at non-atmospheric initial conditions in cylindrical vessel[J]. Process Safety and Environmental Protection,2013,91(4):245-252.
    [2] KASMANII R M,ANDREWS G E,PHYLAKTOU H N.Experimental study on vented gas explosion in a cylindrical vessel with a vent duct[J]. Process Safety and Environmental Protection,2010,88(5):341-349.
    [3] DONG Bingyan,HUANG Peiyu,PENG Xu. Numerical simulation on the venting explosion process of methane and propane gas in closed cylingrical vessel[J].Prcedia Engineering,2012,45(3):448-452.
    [4]吴松林,杜杨,欧阳益,等.圆柱形管道旁侧油气泄爆实验研究[J].爆炸与冲击,2016,36(5):680-687.WU Songlin,DU Yang,OUYANG Yi,et al. Experimental study for lateral gasoline-air venting explosion in cylindrical pipeline[J].Explosion and Shock Waves,2016,36(5):680-687.
    [5]王世茂,杜杨,梁建军,等.破坏压力对含弱顶面受限空间内油气爆燃超压荷载的影响[J].化工学报,2017,68(12):4865-4873.WANG Shimao,DU Yang,LIANG Jianjun,et al.Effect of static rupture pressure on overpressure loadings of gasoline-air mixture deflagration in confined space with weak roof[J]. CIESC Journal,2017,68(12):4865-4873.
    [6]杜杨,王世茂,齐圣,等.油气在顶部含弱约束结构受限空间内的爆炸特性[J].爆炸与冲击,2017,31(1):53-60.DU Yang,WANG Shimao,QI Sheng,et al. Explosion of gasoline/air mixture in confined space with weakly constrained structure at the top[J].Explosion and Shock Waves,2017,31(1):53-60.
    [7]蒋孝海,范宝春,叶经方,等.泄爆过程中二次爆炸的动力学机理研究[J].力学学报,2005,37(4):442-449.JIANG Xiaohai,FAN Baochun,YE Jingfang,et al.Dynamics in external secondary explosion during venting[J].Chinese Journal of Theoretical and Applied Mechanics,2005,37(4):442-449.
    [8]王志荣,潘沫羽,蒋军成.泄爆外部压力变化特性的影响因素[J].解放军理工大学学报,2013,14(5):535-539.WANG Zhirong,PAN Moyu,JIANG Juncheng.Influencing factors of external pressure characteristic induced by venting gas explosion[J].Journal of PLA University of Science and Technology,2013,14(5):535-539.
    [9] YAN Xingqing,YU jianliang,GAO Wei.Duct-venting of dust explosions in 20 L sphere at elevated static activation overpressures[J].Journal of Loss Prevention in the Process Industries,2014,32:63-69.
    [10]李庆钊,翟成,吴海进,等.基于20 L球形爆炸装置的煤尘爆炸特性研究[J].煤炭学报,2011,36(S1):119-124.LI Qingzhao,ZHAI Cheng,WU Haijin,et al. Investigation on coal dust explosion characteristics using 20 L explosion sphere vessels[J].Journal of China Coal Society,2011,36(S1):119-124.
    [11]梁运涛,王连聪,罗海珠,等.定容燃烧反应器中瓦斯爆炸反应动力学计算模型[J].煤炭学报,2015,40(8):1853-1858.LIANG Yuntao,WANG Liancong,LUO Haizhu,et al. Computational model of reaction kinetic for gas explosion in constant volume combustion reactor[J]. Journal of China Coal Society,2015,40(8):1853-1858.
    [12] ZHANG Qingwu,JIANG Juncheng,YOU Mingwei,et al.Experimental study on gas explosion and venting process in interconnected vessels[J]. Journal of Loss Prevention in the Process Industries,2013,26:1230-1237.
    [13]李祥春,聂百胜,杨春丽,等.封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响[J].高压物理学报,2017,31(2):135-147.LI Xiangchun,NIE Baisheng,YANG Chunli,et al. Effect of gas concentration on kinetic characteristics of gas explosion in confined space[J]. Chinese Journal of High Pressure Physics,2017,31(2):135-147.
    [14]李润之,司荣军.瓦斯浓度对爆炸压力及压力上升速率影响[J].西安科技大学学报,2010,30(1):29-33.LI Runzhi,SI Rongjun.Effect of gas concentration on the explosion pressure and pressure rise rate[J]. Journal of Xi’an University of Mining&Technology,2010,30(1):29-33.
    [15]林柏泉,菅从光,周世宁,等.受限空间瓦斯爆炸反射波及对火焰传播的影响[J].中国矿业大学学报,2005,34(1):1-5.LIN Baiquan,JIAN Congguang,ZHOU Shining,et al. Influence of reflected wave of gas explosion on flame transmission in confined space[J]. Journal of China University of Mining&Technology,2005,34(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700