用户名: 密码: 验证码:
基于紫铜填充中间层的黄铜激光焊接气孔控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Controlling of Laser Welding Porosities of Brass Based on Filled Intermediate Layer of Copper
  • 作者:陈梅峰 ; 周广涛 ; 吴世凯 ; 刘方 ; 张华
  • 英文作者:Chen Meifeng;Zhou Guangtao;Wu Shikai;Liu Fang;Zhang Hua;College of Mechanical Engineering and Automation, Huaqiao University;Beijing Engineering Researching Center of Laser Technology, Beijing University of Technology;State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology;
  • 关键词:激光技术 ; 激光焊接 ; 紫铜中间层 ; 黄铜 ; 焊接气孔
  • 英文关键词:laser technique;;laser welding;;copper intermediate layer;;brass;;welding porosity
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:华侨大学机电及自动化学院;北京工业大学北京市激光应用技术工程技术研究中心;哈尔滨工业大学先进焊接与连接国家重点实验室;
  • 出版日期:2018-12-25 07:03
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:先进焊接与连接国家重点实验室开放课题(AWJ-16-M11);; 北京市激光应用技术工程技术研究中心开放课题(BG0046-2018-07);; 华侨大学研究生科研创新基金资助项目
  • 语种:中文;
  • 页:JJZZ201903013
  • 页数:7
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:108-114
摘要
采用中间过渡层的新方法研究了黄铜焊接气孔的控制,对比分析了以紫铜为中间层的黄铜激光焊接和常规激光焊接获得的焊缝的气孔率,结果表明:在中间层条件下,焊缝表面和内部的气孔率均大幅降低;随着焊接速率增大,气孔率逐渐减小,当焊接速率为2.2 mm/s时,气孔率几乎为零;当焊接参数相同时,中间层条件下的焊缝气孔率仅为常规激光焊接的1/3,焊接接头的力学性能优于常规激光焊接。在焊缝成形良好的前提下,验证了采用紫铜为中间层的焊接方法控制黄铜激光焊接气孔缺陷的有效性。
        The control of brass welding porosity is studied by adopting a new method of the intermediate transition layer. The weld porosities of brass laser welding under the copper intermediate layer condition and brass general butt laser welding are contrasted and analyzed. The research results reveal that the porosities of weld surface and weld interior are greatly reduced under the condition of the intermediate layer. As the welding speed increases, the porosity decreases gradually. The porosity is almost zero when the welding speed is 2.2 mm/s. When the welding parameters are the same, the porosity of the weld under the intermediate layer condition is barely one third of that in the normal butt laser welding of brass sheet. The mechanical properties of welded joint obtained at the intermediate layer condition is superior to that of welded joint obtained at normal butt laser welding. Under the premise of good weld formation, the effectiveness of the new method of the copper intermediate layer to control the porosity defects of brass laser welding is verified.
引文
[1] Duan H F, Luo K Y, Lu J Z. Friction and wear properties of H62 brass subjected to laser shock peening[J]. Acta Optica Sinica, 2018, 38(10): 1014002. 段海峰, 罗开玉, 鲁金忠. 激光冲击强化H62黄铜摩擦磨损性能研究[J]. 光学学报, 2018, 38(10): 1014002.
    [2] Zhou L, Li Z Y, Song X G, et al. Influence of laser offset on laser welding-brazing of Al/brass dissimilar alloys[J]. Journal of Alloys and Compounds, 2017, 717: 78-92.
    [3] Qi X Y, Zhang W, Yu S W, et al. Microstructure and mechanical property of laser weld of C18000 copper alloy[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071405. 祁小勇, 张威, 余世文, 等. C18000铜合金激光焊缝组织和力学性能[J]. 激光与光电子学进展, 2017, 54(7): 071405.
    [4] Zhang C, Gao M, Wang D Z, et al. Relationship between pool characteristic and weld porosity in laser arc hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2017, 240: 217-222.
    [5] Yu J, Cho S M. Metal-cored welding wire for minimizing weld porosity of zinc-coated steel[J]. Journal of Materials Processing Technology, 2017, 249: 350-357.
    [6] Yang Y H, Lei Z L, Li B W, et al. Analysis of porosity characteristics of D406A ultrahigh strength steel after laser-TIG hybrid weld with filler metal[J]. Transactions of the China Welding Institution[J]. 2017, 38(12): 114-118. 杨雨禾, 雷正龙, 黎炳蔚, 等. D406A超高强度钢激光-TIG复合填丝焊接气孔特性分析[J]. 焊接学报, 2017, 38(12): 114-118.
    [7] Zhou X K, Mi G Y, Liu S, et al. Laser lap welding of 304 stainless steel/T2 red copper ultra-thin sheets[J]. Chinese Journal of Lasers, 2017, 44(8): 0802006. 周学凯, 米高阳, 刘森, 等. 304不锈钢/T2紫铜超薄板激光搭接焊[J]. 中国激光, 2017, 44(8): 0802006.
    [8] Dong P, Chen K H, Xiao R S. Mechanical properties of aluminum-copper joint by laser penetration brazing[J]. Chinese Journal of Lasers, 2011, 38(6): 0603009. 董鹏, 陈凯华, 肖荣诗. 铝-铜异种金属激光深熔钎焊接头力学性能[J]. 中国激光, 2011, 38(6): 0603009.
    [9] Zhang J, Shan J G, Wen P, et al. Effects of welding parameters on weld porosity during CO2 laser welding of die-cast magnesium alloys[J]. Transactions of the China Welding Institution, 2011, 32(5): 17-20, 24. 张婧, 单际国, 温鹏, 等. 焊接工艺对压铸镁合金CO2激光焊缝气孔率的影响[J]. 焊接学报, 2011, 32(5): 17-20, 24.
    [10] Shan J G, Zhang J, Zheng S Q, et al. Experimental study on pores in laser welding of magnesium alloys[J]. Rare Metal Materials and Engineering, 2009, 38(S3): 234-239. 单际国, 张婧, 郑世卿, 等. 镁合金激光焊接气孔问题的实验研究[J]. 稀有金属材料与工程, 2009, 38(S3): 234-239.
    [11] Yu D Y, Wang X Y. Temperature field simulation of single layer carbon fiber reinforced plastics in parallel laser cutting[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041401. 于冬洋, 王续跃. 激光同向切割单层碳纤维复合材料的温度场模拟[J]. 激光与光电子学进展, 2017, 54(4): 041401.
    [12] Dong Y, Wang D, Wei Z, et al. Numerical simulation and experimental study of temperature evolution of Si-APD irradiated by long-pulse laser[J]. Acta Optica Sinica, 2018, 38(5): 0514005. 董渊, 王頔, 魏智, 等. 长脉冲激光辐照Si-APD温度演化过程的数值模拟与实验研究[J]. 光学学报, 2018, 38(5): 0514005.
    [13] Ma G L, Li L Q, Chen Y B. Comparative study of molten pool behavior and weld formation characteristic in single/dual beam laser welding[J]. Chinese Journal of Lasers, 2017, 44(2): 0202002. 马国龙, 李俐群, 陈彦宾. 单/双光束激光焊接熔池行为及焊缝成形特性比较[J]. 中国激光, 2017, 44(2): 0202002.
    [14] Peng J, Hu S M, Wang X X, et al. Effect of filler metal on three-dimensional transient behavior of keyholes and molten pools in laser welding[J]. Chinese Journal of Lasers, 2018, 45(1): 0102003. 彭进, 胡素梦, 王星星, 等. 填材对激光焊接匙孔与熔池三维瞬态行为的影响[J]. 中国激光, 2018, 45(1): 0102003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700