用户名: 密码: 验证码:
排水速率对潮汐流人工湿地中CANON作用的强化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of drainage rate on the enhancement of the complete autotrophic nitrogen removal over nitrite process in a tidal flow constructed wetland
  • 作者:靳慧征 ; 王振 ; 丁亚男
  • 英文作者:JIN Hui-zheng;WANG Zhen;DING Ya-nan;Henan Technical College of Construction;Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University;
  • 关键词:潮汐流人工湿地(TFCW) ; 排水速率(v_d) ; 基于亚硝化的全程自养脱氮(CANON) ; 厌氧氨氧化 ; 脱氮
  • 英文关键词:tidal flow constructed wetland(TFCW);;drainage rate(v_d);;complete autotrophic nitrogen removal over nitrite (CANON);;anammox;;nitrogen removal
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:河南建筑职业技术学院;安徽农业大学资源与环境学院农田生态保育与污染防控安徽省重点实验室;
  • 出版日期:2018-04-09 14:15
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金资助项目(51508002);; 安徽省自然科学基金资助项目(1508085QE99);; 安徽省高校优秀青年人才支持计划项目(gxyq ZD2017016)
  • 语种:中文;
  • 页:ZGHJ201806027
  • 页数:11
  • CN:06
  • ISSN:11-2201/X
  • 分类号:184-194
摘要
为强化潮汐流人工湿地(TFCW)中基于亚硝化的全程自养脱氮(CANON)作用,探究了不同排水速率(v_d)下系统中氮素的迁移转化机制与微生物特征.结果表明,v_d可显著影响TFCW中脱氮功能微生物的数量与活性,进而影响其氮素转化速率.当v_d由1.00降至0.50L/min时,填料层中逐渐形成较为严格的限氧环境,有利于短程硝化的稳定和厌氧氨氧化菌的富集,进而有助于CANON反应体系在TFCW中形成.而当v_d小于0.50L/min时,填料层中溶解氧相对不足,好氧氨氧化菌活性受到抑制,数量随之减少,CANON作用的强化效果有限,系统脱氮性能受到影响.当v_d为0.50L/min时,TFCW中的CANON作用可得到最大限度的强化,系统脱氮性能达到最佳,其TN和NH_4~+-N的去除负荷分别为(116.79±13.16)和(102.75±4.35)mg/(L·d).对v_d的合理设置可实现TFCW中CANON作用的强化,有利于CANON型人工湿地的构建.
        This study attempted to achieve a high-rate nitrogen removal via the complete autotrophic nitrogen removal over nitrite(CANON) process in a tidal flow constructed wetland(TFCW), thus nitrogen transformation mechanisms and the related microbiological characteristics in the TFCWs treating domestic wastewater were explored under drainage rate(v_d) constraints. The results showed that, v_d significantly affected quantities and activities of the functional microbes in the TFCWs. Correspondingly, nitrogen transformation rates in the systems fluctuated at the different five levels of v_d. As the v_d decreased from 1.00 to 0.50 L/min, the oxygen-limiting microenvironment gradually formed in the TFCW, which was conductive to the stabilization of nitritation and the enrichment of anammox. Subsequently, enhancement of the CANON process was achieved in the TFCW as a result of appropriate v_d. However, as the v_d was lower than 0.50 L/min, the activity of aerobic ammonia-oxidizing bacteria(AOB) was inhibited and its quantity was also insufficient because of the insufficient of dissolved oxygen(DO) in the bed, leading to an unsatisfactory effect for nitrogen removal of the TFCW. When the v_d was 0.50 L/min, the CANON process could be enhanced most effectively in the system, and the mean TN and NH_4~+-N removal rates reached up to(116.79±13.16) and(102.75±4.35)mg/(L·d), respectively. Overall, autotrophic nitrogen removal via CANON process developed in the TFCW as a result of appropriate v_d, facilitating establishment of the TFCW with CANON process.
引文
[1]Wu S,Kuschk P,Brix H,et al.Development of constructed wetlands in performance intensifications for wastewater treatment:A nitrogen and organic matter targeted review[J].Water Research,2014,57:40-55.
    [2]Vymazal J.Constructed wetlands for wastewater treatment:Five decades of experience[J].Environmental Science and Technology,2011,45:61-69.
    [3]Ilyas H,Masih I.The performance of the intensified constructed wetlands for organic matter and nitrogen removal:A review[J].Journal of Environmental Management,2017,198:372-383.
    [4]Vymazal J.The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal:A review of a recent development[J].Water Research,2013,47(14):4795-4811.
    [5]Zhang L,Zhang S,Peng Y,et al.Nitrogen removal performance and microbial distribution in pilot-and full-scale integrated fixed-biofilm activated sludge reactors based on nitritationanammox process[J].Bioresource Technology,2015,196:448-453.
    [6]Khin T,Annachhatre A P.Novel microbial nitrogen removal processes[J].Biotechnology Advances,2004,22(7):519-532.
    [7]Huang M,Wang Z,Qi R.Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland:Effect of saturated zone depth[J].Bioresource Technology,2017,233:191-199.
    [8]Wang Z,Huang M,Qi R,et al.Enhancing nitrogen removal via the complete autotrophic nitrogen removal over nitrite process in a modified single-stage tidal flow constructed wetland[J].Ecological Engineering,2017,103:170-179.
    [9]Wang Z,Huang M,Qi R,et al.Enhanced nitrogen removal and associated microbial characteristics in a modified single-stage tidal flow constructed wetland with step-feeding[J].Chemical Engineering Journal,2017,314:291-300.
    [10]Sun G,Austin D.Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands:Evidence from a mass balance study[J].Chemosphere,2007,68(6):1120-1128.
    [11]Hu Y,Zhao X,Zhao Y.Achieving high-rate autotrophic nitrogen removal via Canon process in a modified single bed tidal flow constructed wetland[J].Chemical Engineering Journal,2014,237:329-335.
    [12]Wen J,Tao W,Wang Z,et al.Enhancing simultaneous nitritation and anammox in recirculating biofilters:Effects of unsaturated zone depth and alkalinity dissolution of packing materials[J].Journal of Hazardous Materials,2013,244:671-680.
    [13]Wu S,Zhang D,Austin D,et al.Evaluation of a lab-scale tidal flow constructed wetland performance:Oxygen transfer capacity,organic matter and ammonium removal[J].Ecological Engineering,2011,37(11):1789-1795.
    [14]柳明慧,吴树彪,鞠鑫鑫,等.潮汐流人工湿地污水强化处理研究进展[J].水处理技术,2014,40(5):10-15.
    [15]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [16]Wang Z,Liu C,Liao J,et al.Nitrogen removal and N2O emission in subsurface vertical flow constructed wetland treating swine wastewater:Effect of shunt ratio[J].Ecological Engineering,2014,73:446-453.
    [17]王建龙,吴立波,齐星,等.用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J],环境科学学报,1999,19(3):225-229.
    [18]刘涛.基于亚硝化的全程自养脱氮工艺(CANON)效能及微生物特征研究[D].哈尔滨:哈尔滨工业大学,2013.
    [19]张肖静.基于MBR的全程自养脱氮工艺(CANON)性能及微生物特性研究[D].哈尔滨:哈尔滨工业大学,2014.
    [20]Ji G,Zhi W,Tan Y.Association of nitrogen micro-cycle functional genes in subsurface wastewater infiltration systems[J].Ecological Engineering,2012,44:269-277.
    [21]Zhi W,Ji G.Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J].Water Research,2014,64:32-41.
    [22]Wang Z,Dong J,Liu L,et al.Screening of phosphate-removing substrates for use in constructed wetlands treating swine wastewater[J].Ecological Engineering,2013,54:57-65.
    [23]王振,刘超翔,李鹏宇,等.废砖块作为人工湿地填料的除磷能力研究[J].环境科学,2012,33(12):4373-4379.
    [24]郑雅楠,滝川哲夫,郭建华,等.SBR法常、低温下生活污水短程硝化的实现及特性[J].中国环境科学,2009,29(9):935-940.
    [25]Nielsen M,Bollmann A,Sliekers O,et al.Kinetics,diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor[J].FEMS Microbiology Ecology,2005,51(2):247-256.
    [26]Pynaert K.,Smets B F,Wyffels S,et al.Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor.Applied&Environmental Microbiology,2003,69(6):3626-3635.
    [27]侯爱月,李军,卞伟,等.不同短程硝化系统中微生物群落结构的对比分析[J].中国环境科学,2016,36(2):428-436.
    [28]陈婷婷,郑平,胡宝兰.厌氧氨氧化菌的物种多样性与生态分布[J].应用生态学报,2009,20(5):1229-1235.
    [29]Poly F,Wertz S,Brothier E,et al.First exploration of Nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxr A[J].FEMS Microbiology Ecology,2007,63(1):132-140.
    [30]Zhu X,Chen Y.Reduction of N2O and NO generation in anaerobic-aerobic(low dissolved oxygen)biological wastewater treatment process by using sludge alkaline fermentation liquid[J].Environmental Science&Technology,2011,45(6):2137-2143.
    [31]Bru D,Sarr A,Philippot L.Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments[J].Applied and Environmental Microbiology,2007,73(18):5971-5974.
    [32]Yan T,Fields M W,Wu L,et al.Molecular diversity and characterization of nitrite reductase gene fragments(nir K and nir S)from nitrate-and uranium-contaminated groundwater[J].Environmental Microbiology,2003,5(1):13-24.
    [33]Kandeler E,Deiglmayr K,Tscherko D,et al.Abundance of nar G,nir S,nir K,and nos Z genes of denitrifying bacteria during primary successions of a glacier foreland[J].Applied&Environmental Microbiology,2006,72(9):5957-5962.
    [34]Braker G,Tiedje J M.Nitric oxide reductase(nor B)genes from pure cultures and environmental samples[J].Applied and Environmental Microbiology,2003,69(6):3476-3483.
    [35]Stres B,Mahne I,Avgu?tin G,et al.Nitrous oxide reductase(nos Z)gene fragments differ between native and cultivated Michigan soils[J].Applied and Environmental Microbiology,2004,70(1):301-309.
    [36]Wang S,Zhu G,Peng Y,et al.Anammox bacterial abundance,activity,and contribution in riparian sediments of the Pearl River estuary[J].Environmental Science&Technology,2012,46(16):8834-8842.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700