用户名: 密码: 验证码:
载荷和滑动速度对块体镁基非晶合金干摩擦性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Load and Sliding Velocity on Dry Friction Properties of Mg-based Bulk Metallic Glass
  • 作者:吕志甲 ; 贺志勇 ; 郑强 ; 鲍明东 ; 冯超 ; 徐雪波
  • 英文作者:LYU Zhi-jia;HE Zhi-yong;ZHENG Qiang;BAO Ming-dong;FENG Chao;XU Xue-bo;School of Materials Science and Engineering, Taiyuan University of Technology;School of Materials Science and Chemical, Ningbo University of Technology;School of Materials Science and Engineering, Chang'an University;
  • 关键词:法向载荷 ; 滑动速度 ; 磨粒磨损 ; 应力软化 ; 粘着磨损 ; 摩擦热
  • 英文关键词:normal load;;sliding speed;;abrasive wear;;stress softening;;adhesive wear;;frictional heat
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:太原理工大学材料科学与工程学院;宁波工程学院材化学院;长安大学材料科学与工程学院;
  • 出版日期:2018-01-20
  • 出版单位:表面技术
  • 年:2018
  • 期:v.47
  • 基金:宁波市自然科学基金(2016A610101)~~
  • 语种:中文;
  • 页:BMJS201801015
  • 页数:8
  • CN:01
  • ISSN:50-1083/TG
  • 分类号:102-109
摘要
目的以制备的Mg_(59.5)Cu_(22.9)Ag_(6.6)Gd_(11)块体镁基非晶合金为基础,探索法向载荷和滑动速度影响镁基非晶合金干摩擦行为的规律和机制,为进一步研究镁基非晶合金提供实验依据。方法采用UMT-2多功能摩擦磨损机,改变法向载荷和滑动速度的大小,进行摩擦磨损实验。通过白光干涉轮廓仪测出磨损轨迹的宽度和深度,再根据公式计算出磨损体积和磨损率。利用扫描电镜和EDS能谱分析磨损轨迹,揭示非晶合金的磨损机制。结果随着载荷的增加,磨损率先减小后稳定,摩擦系数略有减小。随着滑动速度的增加,磨损率先减小后增大,在相对滑动速度为120 mm/s时出现最小值。载荷小于20 N时,磨痕表面布满犁沟和小颗粒状磨屑;载荷大于20 N时,磨痕表面出现层叠状非均匀塑性变形层,对磨球表面转移膜粘连明显。滑动速度低时,磨痕表面布满犁沟,随着速度的增加,先是软化均匀流变,接着出现熔化、剥落。结论块体非晶镁基合金在低载荷下以磨粒磨损为主,还伴随着氧化、少量的粘着;载荷大于20 N时,变为粘着磨损为主。低滑动速度下以磨粒磨损为主,当滑动速度为180 mm/s时,试样表面熔化失效,磨损方式为剥落和磨粒磨损的综合。
        The work aims to study rule and mechanism of influence of normal load and speed on dry friction behavior by using Mg_(59.5)Cu_(22.9)Ag_(6.6)Gd_(11) Mg-based bulk metallic glass(BMG), and provide an experimental basis for further studies of BMG. Friction and wear experiments were performed by changing normal load and sliding speed with UMT-2 multifunctional friction and wear machine. Width and depth of wear tracks were measured with white light interferometry, and wear volume and wear rate were calculated according to formula. Wear tracks were analyzed with scanning electron microscopy and EDS energy spectrum, and wear mechanism of BMG was exposed. With the increase of load, the wear rate first decreased and then remained stable, and friction coefficient decreased slightly. With the increase of sliding speed, the wear rate first decreased and then increased, and the minimum value appeared at the relative sliding speed of 120 mm/s. When the load was less than 20 N, the grinding crack surface was covered with furrows and small granular debris. When the load was greater than 20 N, inhomogeneous overlapped plastic deformation layer appeared on the surface of BMG, and the friction ball head was apparently glued with transferred thick and sticky film. When the sliding speed was low, the grinding crack surface was covered with furrows. As the speed increased, the surface was subject to softening and uniform rheology, followed by melting and spalling at low load. Wear mode of the BMG is abrasive wear accompanied by oxidation and slight adhesion at low load, and mainly adhesive wear at the load of over 20 N. The wear mode is mainly abrasive wear at low sliding speed, and combined spalling and abrasive wear(melting failure) at the sliding speed of 180 mm/s.
引文
[1]ASHLYNN C,MADHAVA M,POLK D E,et al.A Transition-metal-free Amorphous Alloy:Magnesium-Zinc(Mg0.70Zn0.30)[J].Scripta Metallursica,1970,11:65-70.
    [2]INOUE A,MASUMOTO T.Mg-based Amorphous Alloys[J].Materials Science&Engineering A,1993,173(1/2):1-8.
    [3]INOUE A.Amorphous,Nanoquasicrystalline and Nanocrystalline Alloys in Al-based Systems[J].Progress in Materials Science,1998,43(5):365-520.
    [4]CHALLAPALLI S,INOUE A.Bulk Metallic Glasses[J].Physics Today,2013,66(2):32-37.
    [5]INOUE A.Chapter 161 Amorphous,Quasicrystalline and Nanocrystalline Alloys in Al-and Mg-based Systems[J].Handbook on the Physics&Chemistry of Rare Earths,1997,24:83-219.
    [6]JOHNSON W L.Bulk Amorphous Metal—An Emerging Engineering Material[J].JOM,2002,54(3):40-43.
    [7]MA H,SHI L L,XU J,et al.Discovering Inch-diameter Metallic Glasses in Three-dimensional Composition Space[J].Applied Physics Letters,2005,87(18):42.
    [8]ZHENG Qiang,CHENG S,STRADER J H,et al.Critical Size and Strength of the Best Bulk Metallic Glass Former in the Mg-Cu-Gd Ternary System[J].Scripta Materialia,2007,56(2):161-164.
    [9]HU Y,PAN M X,LIU L,et al.Synthesis of Fe-based Bulk Metallic Glasses with Low Purity Materials by Multi-metalloids Addition[J].Materials Letters,2003,57(18):2698-2701.
    [10]YANG H,LIU Y,ZHANG T,et al.Dry Sliding Tribological Properties of a Dendrite-reinforced Zr-based Bulk Metallic Glass Matrix Composite[J].Journal of Materials Science&Technology,2014,30(6):576-583.
    [11]CHOU C C,WANG S H,CHUNG H H,et al.Wear Behavior of Er-bearing Cu-based Amorphous/Crystal BMG Composite under Oil Lubrication[J].Intermetallics,2011,19(8):1216-1221.
    [12]RAHAMAN M L,ZHANG L C,RUAN H H.Effects of Environmental Temperature and Sliding Speed on the Tribological Tehaviour of a Ti-based Metallic Glass[J].Intermetallics,2014,52(4):36-48.
    [13]HUA N,HUANG Y,ZHENG Z,et al.Tribological and Corrosion Behaviors of Mg56.5Cu27Ag5Dy11.5,Bulk Metallic Glass in Na Cl Solution[J].Journal of Non-crystalline Solids,2017,459:36-44.
    [14]GREER A L,RUTHERFORD K L,HUTCHINGS I M.Wear Resistance of Amorphous Alloys and Related Materials[J].International Materials Reviews,2002,47(2):87-112.
    [15]SPAEPEN F.A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses[J].Acta Metallurgica,1977,25(4):407-415.
    [16]ARGON A S,MEGUSAR J,GRANT N J.Shear Band Induced Dilations in Metallic Glasses[J].Scripta Metallurgica,1985,19(5):591-596.
    [17]Meyers M A.Plasticity:Adiabatic Shear Localization[J].Encyclopedia of Materials Science&Technology,2001:51(2):7093-7103.
    [18]FLEURY E,LEE S M,AHNH S,et al.Tribological Properties of Bulk Metallic Glasses[J].Materials Science&Engineering A,2004,s375-377(1):276-279.
    [19]李志刚.Mg基大块非晶合金的制备与性能的研究[D].北京:北京科技大学,2007.LI Zhi-gang.Preparation and Properties of Mg-based Bulk Metallic Glass[D].Beijing:University of Science and Technology Beijing,2007.
    [20]吴宏.Zr基块体非晶合金室温塑性变形与摩擦磨损行为研究[D].长沙:中南大学,2011.WU Hong.Room Temperature Plasticity and Tribological Behavior of Zr-based Bulk Metallic Glass[D].Changsha:Central South University,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700