用户名: 密码: 验证码:
“进源找油”:源岩油气内涵与前景
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:“Exploring petroleum inside source kitchen”:Connotation and prospects of source rock oil and gas
  • 作者:杨智 ; 邹才能
  • 英文作者:YANG Zhi;ZOU Caineng;Research Institute of Petroleum Exploration & Development,PetroChina;
  • 关键词:源岩油气 ; 页岩气 ; 页岩油 ; 煤层气 ; 甜点段 ; 甜点区 ; 源控论 ; 人工油气藏 ; 非常规油气革命 ; 大型常规-非常规“共生盆地”
  • 英文关键词:source rock oil and gas;;shale gas;;shale oil;;coal-bed methane;;sweet section;;sweet area;;source control theory;;artificial oil and gas reservoir;;unconventional oil and gas revolution;;large "coexistence basins" of conventional-unconventional oil and gas
  • 中文刊名:SKYK
  • 英文刊名:Petroleum Exploration and Development
  • 机构:中国石油勘探开发研究院;
  • 出版日期:2018-12-17 17:00
  • 出版单位:石油勘探与开发
  • 年:2019
  • 期:v.46;No.268
  • 基金:国家重点基础研究发展计划(973)项目(2014CB239000);; 国家油气重大专项(2016ZX05046)
  • 语种:中文;
  • 页:SKYK201901018
  • 页数:12
  • CN:01
  • ISSN:11-2360/TE
  • 分类号:176-187
摘要
基于全球能源结构转型背景、非常规油气勘探开发进展和重点盆地研究对比分析,将非常规油气划分为源岩油气、致密油气和滞聚油气3种类型,明确源岩油气是全球油气供应的战略领域,是未来石油工业第2个150 a生命周期中举足轻重的资源组成,是"进源找油"的主要对象。提出源岩油气地质学内涵,集成建立了源岩油气生、排、滞留烃模式,指出5个源岩油气生成段决定相应技术条件下的现实资源潜力;分析了源岩油气"甜点段"形成机理,发现页岩油主要聚集在紧贴生油段、孔渗较好的泥页岩段,而煤层气和页岩气"甜点段"源储一体、吸附在煤层表面或滞留在富有机质黑色页岩段,评价优选源岩油气"甜点区(段)"是"进源找油"的核心;源岩油气资源潜力巨大,继北美之后,全球十余个大型常规-非常规"共生盆地"源岩油气也将迎来大发展,源岩油气是中国未来石油稳定发展的主力、天然气产量跨越的增长点,预计2030年中国源岩油和源岩气产量将分别占比15%和30%;应对源岩油气发展挑战,建议坚持理论创新、设立开发试验区、加强技术攻关、争取国家支持等。源岩油气地质,是"源控论"在非常规油气阶段的新发展,将为承续和推进后油气工业时代上游领域新征程提供新的理论依据。
        Based on the transitional background of the global energy structure, exploration and development of unconventional oil and gas, and investigation of key basins, the unconventional oil and gas resources are divided into three types: source rock oil and gas, tight oil and gas, and retention and accumulated oil and gas. Source rock oil and gas resources are the global strategic supplies of oil and gas, the key resource components in the second 150-year life cycle of the future petroleum industry, and the primary targets for "exploring petroleum inside source kitchen". The geological connotation of source rock oil and gas was proposed, and the models of source rock oil and gas generation, expulsion and accumulation were built, and five source rock oil and gas generation sections were identified, which may determine the actual resource potential under available technical conditions. The formation mechanism of the "sweet sections" was investigated, that is, shale oil is mainly accumulated in the shale section that is close to the oil generation section and has higher porosity and permeability, while the "sweet sections" of coal-bed methane(CBM) and shale gas have self-contained source and reservoir and they are absorbed in coal seams or retained in the organic-rich black shale section, so evaluation and selection of good "sweet areas(sections)" is the key to "exploring petroleum inside source kitchen". Source rock oil and gas resources have a great potential and will experience a substantial growth for over ten world-class large "coexistence basins" of conventional-unconventional oil and gas in the future following North America, and also will be the primary contributor to oil stable development and the growth point of natural gas production in China, with expected contribution of 15% and 30% to oil and gas, respectively, in 2030. Challenges in source rock oil and gas development should be paid more attention to, theoretical innovation is strongly recommended, and a development pilot zone can be established to strengthen technology and promote national support. The source rock oil and gas geology is the latest progress of the "source control theory" at the stage of unconventional oil and gas. It will provide a new theoretical basis for the new journey of the upstream business in the post-industry age.
引文
[1]邹才能,杨智,何东博,等.常规-非常规天然气理论、技术及前景[J].石油勘探与开发,2018,45(4):575-587.ZOU Caineng,YANG Zhi,HE Dongbo,et al.Theory,technology and prospect of natural gas[J].Petroleum Exploration and Development,2018,45(4):575-587.
    [2]丹尼尔?耶金.能源重塑世界[M].朱玉犇,阎志敏,译.北京:石油工业出版社,2012.YERGIN D.The quest:Energy,security,and the remaking of the modern world[M].NIU Yuben,YAN Zhimin,Trans.Beijing:Petroleum Industry Press,2012.
    [3]BP.Statistical review of world energy 2018[R].London:BPDistribution Services,2018.
    [4]邹才能,陶士振,侯连华,等.非常规油气地质学[M].北京:地质出版社,2014.ZOU Caineng,TAO Shizhen,HOU Lianhua,et al.Unconventional petroleum geology[M].Beijing:Geological Publishing House,2014.
    [5]贾承造.论非常规油气对经典石油天然气地质学理论的突破及意义[J].石油勘探与开发,2017,44(1):1-11.JIA Chengzao.Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory[J].Petroleum Exploration and Development,2017,44(1):1-11.
    [6]翟光明.关于非常规油气资源勘探开发的几点思考[J].天然气工业,2008,28(12):1-3.ZHAI Guangming.Speculations on the exploration and development of unconventional hydrocarbon resources[J].Natural Gas Industry,2008,28(12):1-3.
    [7]童晓光,张光亚,王兆明,等.全球油气资源潜力与分布[J].石油勘探与开发,2018,45(4):1-10.TONG Xiaoguang,ZHANG Guangya,WANG Zhaoming,et al.Distribution and potential of global oil and gas resources[J].Petroleum Exploration and Development,2018,45(4):1-10.
    [8]戴金星,倪云燕,黄士鹏,等.中国天然气水合物气的成因类型[J].石油勘探与开发,2017,44(6):837-848.DAI Jinxing,NI Yunyan,HUANG Shipeng,et al.Genetic types of gas hydrates in China[J].Petroleum Exploration&Development,2017,44(6):887-898.
    [9]杨智,邹才能,付金华,等.基于原位转化/改质技术的陆相页岩选区评价:以鄂尔多斯盆地三叠系延长组7段页岩为例[J].深圳大学学报(理工版),2017,34(3):221-228.YANG Zhi,ZOU Caineng,FU Jinhua,et al.Selection of pilot areas for testing in-situ conversion/upgrading processing in lacustrine shale:A case study of Yanchang-7 member in Ordos Basin[J].Journal of Shenzhen University Science and Engineering,2017,34(3):221-228.
    [10]赵文智,胡素云,侯连华.页岩油地下原位转化的内涵与战略地位[J].石油勘探与开发,2018,45(4):537-545.ZHAO Wenzhi,HU Suyun,HOU Lianhua.Connotation and strategic role of in-situ conversion processing of shale oil underground in the onsh onshore China[J].Petroleum Exploration and Development,2018,45(4):537-545.
    [11]USGS.World petroleum assessment[EB/OL].(2013-01-01)[2013-03-01].http://pubs.usgs.gov/dds/dds-060.
    [12]IEA.International energy outlook 2017[EB/OL].(2017-09-14)[2017-12-20].http://www.eia.gov/ieo.
    [13]EIA.International energy outlook 2011[EB/OL].(2011-09-19)[2014-07-03].http://www.eia.gov/pressroom/presentations/howard_09192011.pdf.
    [14]JARVIE D M.Shale resource systems for oil and gas:Part 2:Shale-oil resource systems[C]//BREYER J A.Shale reservoirs:Giant resources for the 21st century.Tulsa:AAPG,2012:89-119.
    [15]戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.DAI Jinxing,NI Yunyan,WU Xiaoqi.Tight gas in China and its significance in exploration and exploitation[J].Petroleum Exploration and Development,2012,39(3):257-264.
    [16]HAO F,ZOU H Y,LU Y C.Mechanisms of shale gas storage:Implications for shale gas exploration in China[J].AAPG Bulletin,2013,97(8):1325-1346.
    [17]HU Q H,ZHANG Y X,MENG X H,et al.Characterization of micro-nano pore networks in shale oil reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin,East China[J].Petroleum Exploration and Development,2017,44(5):681-690.
    [18]LOUCKS R G,RUPPEL S C.Mississippian Barnett Shale:Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas[J].AAPG Bulletin,2007,91(4):579-601.
    [19]NELSON P H.Pore-throat sizes in sandstones,tight sandstones and shales[J].AAPG Bulletin,2009,93(8):329-340.
    [20]ZHANG T W,WANG X Z,ZHANG J F,et al.Geochemical evidence for oil and gas expulsion in Triassic lacustrine organic-rich mudstone,Ordos Basin,China[J].Interpretation,2017,5(2):41-61.
    [21]金之钧,胡宗全,高波,等.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J].地学前缘,2016,23(1):1-10.JIN Zhijun,HU Zongquan,GAO Bo,et al.Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin[J].Earth Science Frontiers,2016,23(1):1-10.
    [22]卢双舫,黄文彪,陈方文,等.页岩油气资源分级评价标准探讨[J].石油勘探与开发,2012,39(2):249-256.LU Shuangfang,HUANG Wenbiao,CHEN Fangwen,et al.Classification and evaluation criteria of shale oil and gas resources:Discussion and application[J].Petroleum Exploration and Development,2012,39(2):249-256.
    [23]邱楠生,许威,左银辉,等.渤海湾盆地中-新生代岩石圈热结构与热-流变学演化[J].地学前缘,2017,24(3):13-16.QIU Nansheng,XU Wei,ZUO Yinhui,et al.Characteristics of MesoCenozoic thermal regimes in typical estern and western sedimentary basins of China[J].Earth Science Frontiers,2017,24(3):13-16.
    [24]HAN Y,HORSFIELD B,WIRTH R,et al.Oil retention and porosity evolution in organic-rich shales[J].AAPG Bulletin,2017,101(6):807-827.
    [25]HAN Y,MAHLSTEDT N,HORSFIELD B.The Barnett Shale:Compositional fractionation associated with intraformational petroleum migration,retention,and expulsion[J].AAPG Bulletin,2015,99(12):2173-2202.
    [26]张金川,徐波,聂海宽,等.中国页岩气资源勘探潜力[J].天然气工业,2008,28(6):136-140.ZHANG Jinchuan,XU Bo,NIE Haikuan,et al.Exploration potential of shale gas resources in China[J].Natural Gas Industry,2008,28(6):136-140.
    [27]邹才能,杨智,陶士振,等.纳米油气与源储共生型油气聚集[J].石油勘探与开发,2012,39(1):13-26.ZOU Caineng,YANG Zhi,TAO Shizhen,et al.Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J].Petroleum Exploration and Development,2012,39(1):13-26.
    [28]邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,2013,40(1):14-26.ZOU Caineng,YANG Zhi,CUI Jingwei,et al.Formation mechanism,geological characteristics and development strategy of nonmarine shale oil in China[J].Petroleum Exploration and Development,2013,40(1):14-26.
    [29]杨智,侯连华,陶士振,等.致密油与页岩油形成条件与“甜点区”评价[J].石油勘探与开发,2015,42(5):555-565.YANG Zhi,HOU Lianhua,TAO Shizhen,et al.Formation condition and“sweet spot”evaluation of tight oil and shale oil[J].Petroleum Exploration and Development,2015,42(5):556-565.
    [30]赵文智,王红军,曹宏,等.中国中低丰度天然气资源大型化成藏理论与勘探开发技术[M].北京:科学出版社,2013.ZHAO Wenzhi,WANG Hongjun,CAO Hong,et al.Large scale accumulation theory and exploration&development technology of natural gas resources with low and medium abundance in China[M].Beijing:Science Publishing House,2013.
    [31]宋岩,刘洪林,柳少波,等.中国煤层气成藏地质[M].北京:科学出版社,2010.SONG Yan,LIU Honglin,LIU Shaobo,et al.Coal-bed gas reservoir geology[M].Beijing:Science Publishing House,2010.
    [32]李剑,马卫,王义凤,等.腐泥型烃源岩生排烃模拟实验与全过程生烃演化模式[J].石油勘探与开发,2018,45(3):445-454.LI Jian,MA Wei,WANG Yifeng,et al.Modeling of the whole hydrocarbon-generating process of sapropelic source rock[J].Petroleum Exploration and Development,2018,45(3):445-454.
    [33]秦建中,刘宝泉.成煤环境不同类型烃源岩生排烃模式研究[J].石油实验地质,2003,25(6):758-764.QIN Jianzhong,LIU Baoquan.Study on the models of hydrocarbon generation and expulsion from various source rocks in coal-bearing environments[J].Petroleum Geology&Experiment,2003,25(6):758-764.
    [34]马中良,郑伦举,余晓露,等.泥质烃源岩的有效排油门限及页岩油地质意义[J].中国石油大学学报(自然科学版),2018,42(1):32-39.MA Zhongliang,ZHENG Lunju,YU Xiaolu,et al.Effective oil expulsion threshold of argillaceous source rocks and geological significance of shale oil[J].Journal of China University of Petroleum,2018,42(1):32-39.
    [35]KO L T,LOUCKS R G,ZHANG T,et al.Pore and pore network evolution of Upper Cretaceous Boquillas(Eagle Ford-equivalent)mudstones:Results from gold tube pyrolysis experiments[J].AAPGBulletin,2016,100(11):1693-1722.
    [36]MILLIKEN K L,RUDNICKI M,AWWILLER N D,et al.Organic matter-hosted pore system,Marcellus formation(Devonian),Pennsylvania[J].AAPG Bulletin,2013,97(2):177-200.
    [37]胡朝元.生油区控制油气田分布:中国东部陆相盆地进行区域勘探的有效理论[J].石油学报,1982,3(2):9-13.HU Chaoyuan.Source bed controls hydrocarbon habitat in continental basins,east China[J].Acta Petrolei Sinica,1982,3(2):9-13.
    [38]胡朝元.“源控论”适用范围量化分析[J].天然气工业,2005,25(10):1-3.HU Chaoyuan.Research on the appliance extent of“source control theory”by semi-quantitative statistics characteristics of oil and gas migration distance[J].Natural Gas Industry,2005,25(10):1-3.
    [39]贾承造,邹才能,杨智,等.陆相油气地质理论在中国中西部盆地的重大进展[J].石油勘探与开发,2018,45(4):1-15.JIA Chengzao,ZOU Caineng,YANG Zhi,et al.Significant progress of continental petroleum geology theory in basins of Central and Western China[J].Petroleum Exploration and Development,2018,45(4):1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700