用户名: 密码: 验证码:
不同密度下越冬型黑麦产量形成的光合特性差异
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of planting density on photosynthetic performance and yield of winter rye
  • 作者:张雪悦 ; 左师宇 ; 田礼欣 ; 李丽杰 ; 任晓松 ; 刘赵月 ; 李晶
  • 英文作者:ZHANG Xue-yue;ZUO Shi-yu;TIAN Li-xin;LI Li-jie;REN Xiao-song;LIU Zhao-yue;LI Jing;College of Agronomy, Northeast Agricultural University;
  • 关键词:越冬型黑麦 ; 种植密度 ; 光合特性 ; 叶绿素荧光 ; 产量
  • 英文关键词:winter rye;;plant density;;photosynthetic characters;;chlorophyll fluorescence;;yield
  • 中文刊名:CYXB
  • 英文刊名:Acta Prataculturae Sinica
  • 机构:东北农业大学农学院;
  • 出版日期:2019-03-20
  • 出版单位:草业学报
  • 年:2019
  • 期:v.28;No.164
  • 基金:国家重点研发计划(2017YFD0300400)资助
  • 语种:中文;
  • 页:CYXB201903014
  • 页数:11
  • CN:03
  • ISSN:62-1105/S
  • 分类号:133-143
摘要
为了探究寒地冬黑麦饲草群体产量形成的光合特性差异,以东农冬黑麦001为材料,采取完全随机设计,设置基本苗为225×10~4株·hm~(-2)(D_1)、275×10~4株·hm~(-2)(D_2)、325×10~4株·hm~(-2)(D_3)、375×10~4株·hm~(-2)(D_4)和425×10~4株·hm~(-2)(D_5)5个密度处理,对比分析各处理主要生育阶段叶绿素含量、光合参数、叶绿素荧光参数的动态变化过程以及产量的差异。结果表明,黑麦整体叶片叶绿素相对含量在抽穗期达到最大,显著高于其他生育时期,随着密度的增高,叶绿素相对含量减少,花后叶绿素含量SPAD值下降幅度随着密度的增大而增加;各密度黑麦叶片净光合速率、气孔导度、蒸腾速率、胞间二氧化碳浓度均在开花期达到最大,显著高于其他生育时期。随着密度的增大,光合参数逐渐减小、最大光化学效率(F_v/F_m)、实际光化学效率(Φ_(PSⅡ))和光化学淬灭系数(qP)逐渐减小,而非光化学淬灭系数(qN)呈增大的趋势。研究得出,越冬型黑麦鲜草产量与干草产量在基本苗为275×10~4株·hm~(-2)时最大,随着密度的增加,黑麦生物产量逐渐降低。表明构建合理群体大小,获得较高花前光合生产能力,是获得寒地冬黑麦高产的基础。
        This experiment aimed to explore the relationship between plant population density and photosynthetic performance and yield of winter rye in a cold region.The variety used was‘Dongnong winter rye 001’,and the experiment comprised 5replicates sowing densities(D_1,225×10~(4 )plants·ha~(-1);D_2,275×10~(4 )plants·ha~(-1);D_3,325×10~(4 )plants·ha~(-1);D_4,375×10~(4 )plants·ha~(-1);D_5,425×10~(4 )plants·ha~(-1)),arranged in a completely random design.Leaf chlorophyll content measured using a SPAD meter(CCM-200+)reached the maximum at the heading stage.With increased crop density,the SPAD value decreased,and the density-induced decrease was more pronounced after anthesis.The maximum values of net photosynthetic rate,stomatal conductance,transpiration rate and intercellular carbon dioxide concentration of rye leaves occurred at the flowering stage.With increasing crop density,many photosynthetic parameters,including the maximum photochemical efficiency(F_v/F_m),the actual photochemical efficiency(Φ_(PSⅡ))and the photochemical quenching coefficient(q_P)showed progressive reduction;however,the non-photochemical quenching coefficient(q_N)increased.The yield of fresh and hay winter rye(Secale)were highest at D_3,after which the biomass yield decreased with increasing density.It is concluded that establishing the correct population density(D_2)to obtain higher photosynthetic capacity before flowering is the basis for obtaining high yield of winter rye in cold regions.
引文
[1]Stephen R C, Lark P C. Crop production: Principles and practices. Scan Francisco: Surject Publications, 1982: 325-335.
    [2]Stutz H C. On the origin of cultivated rye. American Journal of Botany, 1972, 59(1): 59-70.
    [3]Koistinen V M, Hanhineva K. Microbial and endogenous metabolic conversions of rye phytochemicals. Journal Citation Reports, 2017, 61(7): 1600627.
    [4]Burbach K, Strang E J P, Mosenthin R, et al. Porcine intestinal microbiota is shaped by diet composition based on rye or triticale. Journal of Applied Microbiology, 2017, 123: 1571-1583.
    [5]Liu C Y, Sun X Y, Zhu T C, et al. Comparison of the production performance of ryegrass cultivars and screening of dominant varieties. Acta Prataculturae Sinica, 2014, 23(4): 39-48. 刘春英, 孙学映, 朱体超, 等. 不同黑麦草品种生产性能比较与优势品种筛选. 草业学报, 2014, 23(4): 39-48.
    [6]Ma X, Dai X L, Wang X J, et al. Stability of a winter wheat population with high yield and high resource use efficiency. Chinese Journal of Applied Ecology, 2017, 28(12): 3926-3934.马鑫, 代兴龙, 王晓婧, 等. 冬小麦高产高效群体的年际间稳产性能. 应用生态学报, 2017, 28(12): 3926-3934.
    [7]Zhang Y Q, Zhang N, Wang N, et al. Effects of plant population on photosynthetic characteristics and yield components of summer soybean. Journal of Nuclear Agricultural Sciences, 2015, 29(7): 1386-1391. 张永强, 张娜, 王娜, 等. 种植密度对夏大豆光合特性及产量构成的影响. 核农学报, 2015, 29(7): 1386-1391.
    [8]Zhuo W Y, Zhang Z M, Liu M M, et al. Difference of photosynthetic characteristics and agronomic traits in different types of wheat. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(4): 538-546.卓武燕, 张正茂, 刘苗苗, 等. 不同类型小麦光合特性及农艺性状的差异. 西北农业学报, 2016, 25(4): 538-546.
    [9]Zhang D J, Ma X, Wang X D, et al. Effects of variety and density on photosynthetic traits and light utilization efficiency of wheat in middle Henan Province. Journal of Triticeae Crops, 2014, 34(3): 388-394.张黛静, 马雪, 王晓东, 等. 品种与密度对豫中地区小麦光合生理特性及光能利用率的影响. 麦类作物报, 2014, 34(3): 388-394.
    [10]Wang Z J, Guo T C, Wang H C, et al. Effect of planting density on photosynthetic characteristics and grain yield of super-high-yield winter wheat at late growth stages. Journal of Triticeae Crops, 2001, 21(3): 64-67.王之杰, 郭天财, 王化岑, 等. 种植密度对超高产小麦生育后期光合特性及产量的影响. 麦类作物学报, 2001, 21(3): 64-67.
    [11]Shao Y W, Hai J B, Luo H B, et al. Effects of different densities on photosynthetic characteristics and yields of winter wheat under bunch planting in Guanzhong irrigation areas. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(5): 667-676. 邵玉伟, 海江波, 罗宏博, 等. 不同密度对关中灌区穴播冬小麦光合特性及产量影响. 西北农业学报, 2016, 25(5): 667-676.
    [12]Zhang Y L, Lan L, Li Y M, et al. Effects and physiological mechanism of planting densities on photosynthesis characteristics of flag leaf and grain yield in wheat hybrid C6-38/Py85-1. Journal of Triticeae Crops, 2008, 28(1): 113-117. 张永丽, 蓝岚, 李雁鸣, 等. 种植密度对杂种小麦C6-38/Py85-1群体生长和籽粒产量的影响. 麦类作物学报, 2008, 28(1): 113-117.
    [13]Zhang X Q, Chen H, Zhao Z, et al. Effect of planting density and row spacing on growth, photosynthesis and yield of wheat under early sowing. Journal of Triticeae Crops, 2015, 35(1): 86-92. 张向前, 陈欢, 赵竹, 等. 密度和行距对早播小麦生长、光合及产量的影响. 麦类作物学报, 2015, 35(1): 86-92.
    [14]You H X. The photosynthesis characteristics of the winter wheat colony of different density. Chinese Agricultural Science Bulletin, 2005, 21(4): 162-165.由海霞. 不同密度小麦群体的光合作用特性研究. 中国农学通报, 2005, 21(4): 162-165.
    [15]Zhu C L, Li R N, Zhang B J, et al. Effect of planting density on growth characters and yield of winter wheat variety of big spike in dryland. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(1): 71-75. 朱翠林, 李锐宁, 张保军, 等. 旱肥地密度对大穗型冬小麦品种生育特性及产量的影响. 西北农业学报, 2010, 19(1): 71-75.
    [16]Hu X H, Shao Y, He Y L, et al. Researches on techniques of high yield cultivation of greenfeed——Ⅲ. Studies on the relation of seeding rate of rye and rye grass to biological yield. Journal of Shanghai Agricultural College, 1988, 6(4): 341-347. 胡雪华, 邵游, 何亚丽, 等. 饲料作物高产栽培技术研究——Ⅲ.黑麦和黑麦草种植密度与鲜草量的数量关系研究. 上海农学院学报, 1988, 6(4): 341-347.
    [17]Li Z J, Zhou D W, Hu Y G. Effects of accumulated temperature and planting density on tillering dynamics of forage rye. Chinese Journal of Applied Ecology, 2004, 15(3): 413-419. 李志坚, 周道玮, 胡跃高. 不同积温和种植密度对饲用黑麦分蘖动态的影响. 应用生态学报, 2004, 15(3): 413-419.
    [18]Zhu Y Q, Lin C W, Du Z H, et al. Effect of planting density on production performance of Italian ryegrass in the mulberry and grass intercropping. Pratacultural Science, 2011, 28(4): 607-610. 朱永群, 林超文, 杜周和, 等. 不同种植密度对套作多花黑麦草生产性能的影响. 草业科学, 2011, 28(4): 607-610.
    [19]Wang L H, Li G L, Li J, et al. Effect of exogenous sugar on the sugar metabolism in triticale seedling under salt stress. Journal of Triticeae Crops, 2017, 37(4): 548-553.王丽华, 李改玲, 李晶, 等. 外源糖对盐胁迫下小黑麦幼苗糖代谢的影响. 麦类作物学报, 2017, 37(4): 548-553.
    [20]Xie N, Zhao H M, Li Y, et al. Salt tolerance evaluation and physiological responses of forage rye and triticale at seedling growth stages. Acta Agrestia Sinica, 2016, 24(1): 84-92.谢楠, 赵海明, 李源, 等. 饲用黑麦、小黑麦品种苗期耐盐性评价及盐胁迫下的生理响应. 草地学报, 2016, 24(1): 84-92.
    [21]Lee K W, Choi G J, Kim K Y, et al. A proteomic approach to identify salt-responsive proteins in rye. Pakistan Journal of Botany, 2013, 45(5): 1489-1496.
    [22]Yu L P, Zhang C L, Ma N, et al. Physiological responses of rapeseed (Brassica napus) to drought and phosphorus deficiency II: Chlorophyll content and chlorophyll fluorescence parameters. Agricultural Research in the Arid Areas, 2013, 31(2): 169-175. 余利平, 张春雷, 马霓, 等. 甘蓝型油菜对干旱和低磷双重胁迫的生理反应Ⅱ: 叶片叶绿素含量及叶绿素荧光参数. 干旱地区农业研究, 2013, 31(2): 169-175.
    [23]Nikolaeva M K, Maevskaya S N, Shugaev A G, et al. Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology, 2010, 57(1): 87-95.
    [24]Guendouz A, Guessoum S, Maamari K, et al. Predicting the efficiency of using the RGB (Red, Green and Blue) reflectance for estimating leaf chlorophyll content of durum wheat (Triticum durum Desf.) genotypes under semi arid conditions. American-Eurasian Journal of Sustainable Agriculture, 2012, 6(2): 102-106.
    [25]Sui N, Li M, Tian J C, et al. Photosynthetic characteristics of super high yield wheat cultivars at late growth period. Acta Agronomica Sinica, 2005, 31(6): 808-814. 隋娜, 李萌, 田纪春, 等. 超高产小麦品种(系)生育后期光合特性的研究. 作物学报, 2005, 31(6): 808-814.
    [26]Jiang J, Wang S R, Zhang L Q, et al. Effects of planting density and fertilizer application rate on agronomic traits, chlorophyll content, leaf area and yield of wheat Nanmai 618. Journal of Southern Agriculture, 2017, 48(3): 416-421. 蒋进, 王淑荣, 张连全, 等. 种植密度和施肥量对南麦618农艺性状、叶绿素含量及产量的影响. 南方农业学报, 2017, 48(3): 416-421.
    [27]Lang Y Z, Wang M E, Lü C G, et al. Response of leaf morphology, population structure and yield to planting density in rice. Jiangsu Journal of Agricultural Sciences, 2012, 28(1): 7-11. 郎有忠, 王美娥, 吕川根, 等. 水稻叶片形态、群体结构和产量对种植密度的响应. 江苏农业学报, 2012, 28(1): 7-11.
    [28]Ma J H, Zhang L X, Jiang L N, et al. Effect of nitrogen and density on photosynthetic physiology and matter accumulation of winter wheat. Journal of Triticeae Crops, 2015, 35(5): 674-680. 马建辉, 张利霞, 姜丽娜, 等. 氮肥和密度对冬小麦光合生理和物质积累的影响. 麦类作物学报, 2015, 35(5): 674-680.
    [29]Wang L H, Zuo S Y, Cao X B, et al. Variation of photosynthetic characters and yield among different types of triticale. Journal of Triticeae Crops, 2017, 37(10): 1334-1342. 王丽华, 左师宇, 曹鑫波, 等. 不同类型小黑麦产量形成的光合特性差异. 麦类作物学报, 2017, 37(10): 1334-1342.
    [30]Zhang H Z, Chen X W, Lei J J, et al. Effect of planting density and topdressing nitrogen on photosynthetic rate and chlorophyll fluorescence and yield of wheat under apricot-wheat intercropping. Journal of Triticeae Crops, 2015, 35(3): 387-393. 张宏芝, 陈兴武, 雷钧杰, 等. 杏麦间作模式下小麦光合速率、叶绿素荧光及产量对追氮量和播种密度的响应. 麦类作物报, 2015, 35(3): 387-393.
    [31]Chen G Y, Chen J, Xu D Q. The thinking of the relationship between the photosynthetic rate and intercellular CO2 concentration. Plant Physiology Communications, 2010, 46(1): 64. 陈根云, 陈娟, 许大全. 关于净光合速率和胞间CO2浓度关系的思考. 植物生理学通讯, 2010, 46(1): 64.
    [32]Fang F, Zhang C X, Huang H J, et al. The occurrence of Tausch’s goatgrass (Aegilops tauschii Coss.) in wheat fields and its effect on wheat yield. Acta Ecologica Sinica, 2014, 34(14): 3917-3923. 房锋, 张朝贤, 黄红娟, 等. 麦田节节麦发生动态及其对小麦产量的影响. 生态学报, 2014, 34(14): 3917-3923.
    [33]Liu S R, Guo S R, Cheng Y J, et al. Effects of exogenous proline on the ascorbat-glutahione cycle and photosynthetic fluorescence characteristics in leaves of cucumber seedlings under high temperature stress. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(2): 309-316. 刘书仁, 郭世荣, 程玉静, 等. 外源脯氨酸对高温胁迫下黄瓜幼苗叶片AsA-GSH循环和光合荧光特性的影响. 西北植物学报, 2010, 30(2): 309-316.
    [34]Zhao L Y, Deng X P, Shan L. Effects of osmotic stress on chlorophyll fluorescence parameters of wheat seedling. Chinese Journal of Applied Ecology, 2005, 16(7): 1261-1264. 赵丽英, 邓西平, 山仑. 渗透胁迫对小麦幼苗叶绿素荧光参数的影响. 应用生态学报, 2005, 16(7): 1261-1264.
    [35]Li J, Li S S, Fu C, et al. Effect of density and nitrogen on chlorophyll fluorescence characters of triticale. Journal of Triticeae Crops, 2011, 31(1): 143-148. 李晶, 李双双, 付驰, 等. 密度和施氮水平对小黑麦叶绿素荧光特性的影响. 麦类作物学报, 2011, 31(1): 143-148.
    [36]Luo L P, Yu Z W, Wang D, et al. Effects of planting density and soil moisture on flag leaf photosynthetic characteristics and dry matter accumulation and distribution in wheat. Acta Agronomica Sinica, 2011, 37(6): 1049-1059. 骆兰平, 于振文, 王东, 等. 土壤水分和种植密度对小麦旗叶光合性能和干物质积累与分配的影响. 作物学报, 2011, 37(6): 1049-1059.
    [37]Xiao Y, Zhu X G. Chlorophyll fluorescence and stable isotope signals in photosynthesis research. Plant Physiology Journal, 2016, 52(11): 1663-1670. 肖怡, 朱新广. 叶绿素荧光及碳氧同位素信号在光合作用研究中的应用. 植物生理学报, 2016, 52(11): 1663-1670.
    [38]Liu J X, Wang J C, Wang R J, et al. Effects of exogenous nitric oxide on photosynthetic and bioluminescent characteristics in ryegrass seedlings under osmotic stress. Acta Prataculturae Sinica, 2013, 22(1): 210-216.刘建新, 王金成, 王瑞娟, 等. 外源一氧化氮对渗透胁迫下黑麦草幼苗光合和生物发光特性的影响. 草业学报, 2013, 22(1): 210-216.
    [39]Liu J X, Wei S Q, Zhai F F, et al. Growth and physiology response of perennial ryegrass to Cd2+ stress. Journal of Nuclear Agricultural Sciences, 2015, 29(3): 587-594.刘俊祥, 魏树强, 翟飞飞, 等. Cd2+胁迫下多年生黑麦草的生长与生理响应. 核农学报, 2015, 29(3): 587-594.
    [40]Shao L W, Wang Y Z, Miao W F, et al. Effect of cultivar and plant density on summer maize grain yield and water use efficiency in north China plain. Acta Agriculturae Boreali-Sinica, 2011, 26(3): 182-188.邵立威, 王艳哲, 苗文芳, 等. 品种与密度对华北平原夏玉米产量及水分利用效率的影响. 华北农学报, 2011, 26(3): 182-188.
    [41]Wen H X, Feng W S, Duan G H, et al. Effects of different planting densities on grain-filling characteristics and yield of winter wheat. Acta Agriculturae Jiangxi, 2009, 21(12): 23-25.温红霞, 冯伟森, 段国辉, 等. 不同播种密度对冬小麦灌浆特性及产量的影响. 江西农业学报, 2009, 21(12): 23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700