用户名: 密码: 验证码:
硅铝比对Cu-Co/ZSM-5-Al_2O_3催化剂性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Influence of Si/Al on Cu-Co/ZSM-5-Al_2O_3 Catalyst Performance
  • 作者:董坤 ; 王琪 ; 徐健 ; 郭红彦 ; 崔鹏
  • 英文作者:DONG Kun;WANG Qi;XU Jian;GUO Hong-yan;CUI Peng;Controllable Chemical and Chemical Materials of Key Laboratory of Anhui Province,College of Chemistry and Chemical Engineering,Hefei University of Technology;Materials Science and Engineering Post-doctoral Mobile Stations,Hefei University of Technology;
  • 关键词:混合载体 ; 铜钴基催化剂 ; 硅铝比 ; 合成气 ; 混合醇
  • 英文关键词:mixed carrier;;copper cobalt catalyst;;Si/Al;;syngas;;mixed alcohol
  • 中文刊名:AHHG
  • 英文刊名:Anhui Chemical Industry
  • 机构:合肥工业大学化学与化工学院可控化学与材料化工安徽省重点实验室;合肥工业大学材料科学与工程博士后流动站;
  • 出版日期:2016-10-15
  • 出版单位:安徽化工
  • 年:2016
  • 期:v.42;No.203
  • 基金:国家自然科学基金(21106027);; 固体表面物理化学国家重点实验室开放基金(201412)
  • 语种:中文;
  • 页:AHHG201605010
  • 页数:5
  • CN:05
  • ISSN:34-1114/TQ
  • 分类号:30-34
摘要
采用物理混合法制备了不同硅铝比的ZSM-5与Al_2O_3的混合载体,并采用浸渍法制备Cu-Co基催化剂,考查其对合成气制混合醇性能的影响,并用Ar物理吸-脱附、H2程序升温还原(H2-TPR)、X射线光电子能谱(XPS)等手段对其结构性能进行了表征。结果表明:当混合载体中ZSM-5硅铝比为50时,载体形成了新的孔道结构,有利于消除载体的堆积现象,促进载体活性物种的分散,更有利于表面活性物种的还原,同时改变了表面活性物中的化学状态,从而使合成气制备低碳混合醇具有较高的反应活性和选择性。在5.0MPa,300℃,V(H2)∶V(CO)∶V(N2)=4∶2∶1,GHSV=7200m L·h~(-1)反应条件下,不同硅铝比的混合载体催化剂表现出不同的催化活性,其中当混合载体中ZSM-5硅铝比为50时,CO转化率和C~(2+)醇类选择性分别达到21.31%和41.80%。
        ZSM-5 zeolite with different Si/Al ratio and Al_2O_3 were used to prepare hybrid supported Cu-Co based catalysts.The properties of lower carbon mixed alcohols synthesis from syngas were studied. The textual and structural properties of the catalysts were studied using Ar physics-stripping in low temperature,H_2-temperature programmed reduction(H_2-TPR),X-ray photoelectron spectroscopy(XPS). The results indicate that when the hybrid supported with Si/Al ratio of 50 would form the new channel structure and beneficial to eliminate the phenomenon of the accumulation of carrier,the hybrid supported contributed to high metal dispersion,be beneficial to the reduction of surface active species,changed the chemical state of the surface activity at the same time,thus improve the conversion and selectivity of the reaction. In 5.0MPa,300℃,V(H_2)∶V(CO)∶V(N_2)=4∶2∶1,GHSV=7200m L·h~(-1) reaction conditions,hybrid supported catalysts with different Si/Al ratio showed different catalytic activity. When the Si/Al ratio of ZSM-5 zeolite to 50 of ZSM-5/Al_2O_3,the CO conversion was 21.31% and the C~(2+) alcohol selectivity was 41.80%.
引文
[1]Abdelsayed V,Shekhawat D,Poston Jr J A,et al.Synthesis,Characterization,and Catalytic Activity of Rh-based Lanthanum Zirconate Pyrochlores for Higher Alcohol Synthesis[J].Catalysis Today,2013,207(21):65-73.
    [2]Fan Z L,Chen W,Pan X L,et al.Catalytic Conversion of Syngas into C2+Oxygenates over Rh-based Catalysts-effect of Carbon Supports[J].Catalysis Today,2009,147(2):86-93.
    [3]YANG Yan-zhang,QI Xing-zhen,WANG Xin-xing,et al.Deactivation Study of Cu-Co Catalyst for Higher Alcohol Synthesis Via Syngas[J].Catalysis Today,2015.
    [4]杨意泉,许金来,林国栋,等.合成气制醇钼硫基催化剂上吸附物种的红外光谱表征[J].高等学校化学学报,1994,15(1):98-102.
    [5]Khodakov A Y,Zholobenko V L,Bechara R,et al.Impact of Aqueous Impregnation on the Long-range Ordering and Mesoporous Structure of Cobalt Containing MCM-41 and SBA-15 Materials[J].Microporous and Mesoporous Materials,2005,79(s1-3):29-39.
    [6]WANG Jing-juan,Chernavskii P A,Khodakov A Y,et al.Structure and Catalytic Performance of Alumina-supported Copper Cobalt Catalysts for Carbon Monoxide Hydrogenation[J].Journal of Catalysis,2012,286(4):51-61.
    [7]WANG Jing-juan,Chernavskii P A,WANG Ye,et al.Influence of the Support and Promotion on the Structure and Catalytic Performance of Copper-cobalt Catalysts for Carbon Monoxide Hydrogenation[J].Fuel,2013,103(1):1111-1122.
    [8]WANG Zi,Spivey J J.Effect of Zr O2,Al2O3and La2O3on Cobalt Copper Catalysts for Higher Alcohols Synthesis[J].Applied Catalysis A General,2015,507:75-81.
    [9]HE Ying-ping,LIU Min,DAI Cheng-yi,et al.Modification of Nanocry-stalline ZSM-5 Zeolite with Tetrapropylammonium Hydroxide and Its Catalytic Performance in Methanol to Gasoline Reaction[J].Chinese Journal of Catalysis,2013,34(6):1148-1158.
    [10]F Jiao,J Li,X Pan,et al.Selective Conversion of Syngas to Light Olefins[J].Science,2016,351(6277):1065-1068.
    [11]Cheng Kang,Gu Bang,Liu Xiao-liang,et al.Direct and Highly Selective Conversion of Synthesis Gas to Lower Olefins:Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling[J].Angewandte Chemie-International Edition,2016.
    [12]王树国,吴东,孙予罕,等.Al MCM-48介孔分子筛的合成研究[J].燃料化学学报,2001,29(z1):26-27.
    [13]Wang J J,Chernavskii P A,Khodakov A Y,et al.Structure and Catalytic Performance of Alumina-supported Copper-cobalt Catalysts for Carbon Monoxide Hydrogenation[J].Journal of Catalysis,2012,286(4):51-61.
    [14]崔云鹤,铜钴硅催化剂上合成气制备低碳混合醇的研究[D].厦门大学,2012.
    [15]Xu X D,Doesburg E B M,Scholten J J F.Synthesis of Higher Alcohols from Syngas-recently Patented Catalysts and Tentative Ideas on the Mechanism[J].Catalysis Today,1987,2(1):125-170.
    [16]丁凡舒,聂小娃,刘民,等.Fe基催化剂上二氧化碳加氢制C2+烃的研究进展[J].应用化学,2016,33(2):123-132.
    [17]王峰,任杰,李永旺.密度泛函法计算C-1-C-(14)正构烃生成焓及C-C键裂解能[J].应用化学,2009,26(12):114-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700