用户名: 密码: 验证码:
不同环境下AlSiFeMm非晶纳米晶涂层摩擦磨损行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Wear Behaviors of As-sprayed AlSiFeMm Amorphous/Nanocrystalline Coating in Different Environments
  • 作者:刘奇 ; 程江波 ; 冯源 ; 梁秀兵 ; 陈永雄 ; 胡振峰
  • 英文作者:LIU Qi;CHENG Jiang-bo;FENG Yuan;LIANG Xiu-bing;CHEN Yong-xiong;HU Zhen-feng;School of Mechanics and Materials, Hohai University;Academy of Military Science PLA China,National Innovation Institute of Defense Technology;
  • 关键词:铝基非晶纳米晶 ; 涂层 ; 干摩擦 ; 腐蚀磨损 ; 磨损机制
  • 英文关键词:Al-based amorphous/nanocrystalline;;coating;;dry sliding;;tribocorrosion;;wear mechanism
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:河海大学力学与材料学院;军事科学院国防科技创新研究院;
  • 出版日期:2019-04-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(51575159);; 国家重点研发计划(2018YFC1902400);; 江苏省重点研发计划(BE2017065)~~
  • 语种:中文;
  • 页:BMJS201904013
  • 页数:9
  • CN:04
  • ISSN:50-1083/TG
  • 分类号:89-97
摘要
目的研究AlSiFeMm(Mm为镍包混合稀土)非晶纳米晶涂层在干摩擦和3.5%NaCl溶液中的摩擦磨损行为。方法采用Rtec(MFT-3000)往复式磨损试验机测试涂层在干摩擦条件和有腐蚀介质条件下的摩擦磨损性能,使用LEXTOL3000-IR非接触三维表面轮廓仪测定涂层的磨损体积和磨痕的三维形貌,利用扫描电子显微镜对磨痕进行形貌观察和成分分析。结果铝基非晶纳米晶涂层的摩擦系数随着载荷的增加而不断减小。干摩擦条件下,铝基非晶纳米晶涂层的磨损率随着载荷的增加而增大,当磨损速度为10 mm/s、载荷为15 N时,涂层相对耐磨性为6061铝合金的2.5倍,其磨损机制为脆性剥落、磨粒磨损,并伴随氧化磨损。在3.5%NaCl溶液中,涂层的磨损率随着载荷的增加而逐渐降低,当磨损速度为35 mm/s、载荷为30N时,涂层的耐磨性能约为6061铝合金的8倍,其失效机制主要为剥层磨损和腐蚀磨损。结论铝基非晶纳米晶复合涂层在干摩擦和腐蚀介质中均表现出较为优异的耐磨性能,可以作为轻质合金涂层应用于表面防护领域。
        The work aims to investigate the sliding wear behaviors of the AlSiFeMm(Mm is Ni-wrapped rare earth elements) amorphous/nanocrystalline coating under dry friction and 3.5%NaCl solution conditions. Rtec(MFT-3000) reciprocating ball-on-block tester was used to measure tribological properties of the coating under dry friction and corrosive medium. The wear volumes and 3-dimensional profiles of worn tracks of the coating were measured by LEXT OL 3000-IR non-contact three-dimensional surface profilometer. The worn surface morphology and components were analyzed by scanning electron microscopy(SEM). The friction coefficient of Al-based amorphous/nanocrystalline coating decreased with the increase of load.Under dry friction conditions, the wear rate of coating increased with the increase of load. The wear resistance of the coating was about 2.5 times that of the 6061-Al alloy with sliding speed of 10 mm/s and load of 15 N. The wear mechanism was brittle flaking, abrasive wear and oxidative wear. In 3.5%NaCl solution, the wear rate of the coating gradually decreased with the increase of load. When the sliding speed was 35 mm/s and load was 30 N, the wear resistance of the coating in corrosive medium was about 8 times that of 6061-Al alloy. The wear mechanism of the coating was delamination and corrosion damage. The Al-based amorphous/nanocrystalline coating has excellent wear resistance in dry friction and corrosive media, and can be used as a lightweight alloy coating in the field of surface protection.
引文
[1]徐滨士.再制造工程基础及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005.XU Bin-shi.Remanufacturing engineering foundation and its application[M].Harbin:Harbin Institute of Technology Press,2005.
    [2]UOZATO S,NAKATA K,USH M.Corrosion and wear behaviors of ferrous powder thermal spray coatings on aluminum alloy[J].Surface and coatings technology,2003,169-170:691-694.
    [3]朱子新,徐滨士,马世宁,等.高速电弧喷涂Fe-Al/WC复合涂层的摩擦学特性[J].摩擦学学报,2003,23(3):173-178.ZHU Zi-xin,XU Bin-shi,MA Shi-ning,et al.Tribological properties of Fe-Al/WC composite coating prepared by high velocity arc spraying[J].Tribology,2003,23(3):173-178.
    [4]程江波,梁秀兵,王泽华,等.油润滑条件下FeBSiNb非晶涂层磨损性能研究[J].摩擦学学报,2012,32(2):119-125.CHENG Jiang-bo,LIANG Xiu-bing,WANG Ze-hua,et al.Wear behavior of FeBSiNb metallic glass coating under oil lubrication[J].Tribology,2012,32(2):119-125.
    [5]LIU Q,CHENG J,WANG B,et al.Effects of substitution of Fe by mischmetal on formation and properties of arc-sprayed AlSi-based amorphous coating[J].Journal of thermal spray technology,2018,27(6):949-958.
    [6]ZHANG Z B,LIANG X B,CHEN Y X,et al.Abrasion resistance of Al-Ni-Mm-Fe amorphous and nanocrystalline composite coating on the surface of AZ91 magnesium alloy[J].Physics procedia,2013,50:156-162.
    [7]NEWBERY A P,GRANT P S,NEISER R A.The velocity and temperature of steel droplets during electric arc spraying[J].Surface&coatings technology,2005,195(1):91-101.
    [8]INOUE A,OHTERA K,TSAI A P,et al.Aluminumbased amorphous alloys with tensile strength above 980MPa(100 kg/mm2)[J].Japanese journal of applied physics,1988,27(4):479-482.
    [9]GAUTHIER B,TAILLEART N,EIDELMAN S,et al Spray applied amorphous/nanocrystalline aluminum alloy coatings as a replacement for aluminum cladding[J].ECStransactions,2008,11(15):59-74.
    [10]YANG B J,YAO J H,ZHANG J,et al.Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength[J].Scripta materialia,2009,61(4):423-426.
    [11]HENAO J,CONCUSTELL A,CANO I G,et al.Novel Al-based metallic glass coatings by cold gas spray[J].Materials&design,2016,94:253-261.
    [12]GAO M,LU W,YANG B,et al.High corrosion and wear resistance of Al-based amorphous metallic coating synthesized by HVAF spraying[J].Journal of alloys and compounds,2018,735:1363-1373.
    [13]CHENG,J,WANG B,LIU Q.In-situ synthesis of novel Al-Fe-Si metallic glass coating by arc spraying[J].Journal of alloys and compounds,2017,716:88-95.
    [14]GREER A L,RUTHERFORD K L,HUTCHINGS I M.Wear resistance of amorphous alloys and related materials[J].International materials reviews,2002,47(2):87-112.
    [15]FLEURY E,LEE S M,AHN H S,et al.Tribological properties of bulk metallic glasses[J].Materials science&engineering:A,2004,375:276-279.
    [16]KONG J,XIONG D,LI J,et al.Effect of flash temperature on tribological properties of bulk metallic glasses[J].Tribology letters,2009,35(3):151-158.
    [17]CHENG J,LIU D,LIANG X,et al.Wear behaviors of arc-sprayed Fe BSi Nb amorphous coatings[J].Tribology letters,2015,60(2):22.
    [18]YAVARI A R,BOTTA F W J,RODRIGUES C A D,et al.FeNiB-based metallic glasses with fcc crystallisation products[J].Journal of non-crystalline solids,2002,304(1):44-50.
    [19]GLORIANT T.Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials[J].Journal of non-crystalline solids,2003,316(1):96-103.
    [20]ARCHARD J F.Contact and rubbing of flat surfaces[J].Journal of applied physics,1953,24(8):981-988.
    [21]CHENG J B,LIANG X B,XU B S.Devitrification of arc-sprayed Fe BSi Nb amorphous coatings:effects on wear resistance and mechanical behavior[J].Surface&coatings technology,2013,235:720-726.
    [22]陈君,李全安,张清,等.AISI316不锈钢腐蚀磨损交互作用的研究[J].中国腐蚀与防护学报,2014,34(5):433-438.CHEN Jun,LI Quan-an,ZHANG qin,et al.Sliding wear-corrosion performance of AISI316 stainless steel against alumina in artificial seawater[J].Journal of Chinese society for corrosion and protection,2014,34(5):433-438.
    [23]IWABUCHI A,SONODA T,YASHIRO H,et al.Application of potential pulse method to the corrosion behavior of the fresh surface formed by scratching and sliding in corrosive wear[J].Wear,1999,225-229:181-189.
    [24]STEMP M,MISCHLER S,LANDOLT D.The effect of contact configuration on the tribocorrosion of stainless steel in reciprocating sliding under potentiostatic control[J].Corrosion science,2003,45(3):625-640.
    [25]JIANG J Z,HOFMANN D,JARVIS D J,et al.Lowdensity high-strength bulk metallic glasses and their composites:A review[J].Advanced engineering materials,2015,17(6):761-780.
    [26]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003:196-221.JIANG Xiao-xia,LI Shi-zhuo,LI Shu.Corrosive wear of metals[M].Beijing:Chemical Industry Press,2003:196-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700