用户名: 密码: 验证码:
食物和理化因子对浮游甲壳动物群落结构的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of food and physicochemical factors on crustacean zooplankton community structure
  • 作者:王松波 ; 耿红 ; 吴来燕 ; 杜鸿
  • 英文作者:WANG Songbo;GENG Hong;WU Laiyan;DU Hong;College of Resources and Environmental Science,South-Central University for Nationalities;College of Life Sciences,South-Central University for Nationalities;
  • 关键词:食物质量 ; 食物数量 ; 悬浮物 ; 生态化学计量学 ; 典范对应分析
  • 英文关键词:Food quality;;food quantity;;seston;;ecological stoichiometry;;canonical correspondence analysis
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:中南民族大学资源与环境学院;中南民族大学生命科学学院;
  • 出版日期:2018-05-06
  • 出版单位:湖泊科学
  • 年:2018
  • 期:v.30
  • 基金:国家自然科学基金项目(31200361);; 中央高校专项基金项目(CZY16012)联合资助
  • 语种:中文;
  • 页:FLKX201803014
  • 页数:9
  • CN:03
  • ISSN:32-1331/P
  • 分类号:145-153
摘要
食物质量和数量对浮游动物群落结构的影响在野外研究中较少涉及.本文通过对湖北省境内14个水体的春季采样,分析了食物质量和数量以及理化因子对浮游甲壳动物群落结构的影响.结果显示,浮游甲壳动物的密度和生物量以及Daphnia的相对生物量百分比与光照漫射衰减系数(Kd)呈显著负相关,与营养盐和叶绿素a(Chl.a)浓度无显著相关性;群落的平均体长随Chl.a浓度的增加而减小.典范对应分析显示,7个因子共解释了优势浮游甲壳动物群落结构变异的37.4%,贡献率排在前4位的是Kd、Chl.a浓度、悬浮物C/N比和C/P比,分别解释了总变异的11.5%、8.9%、5.6%和4.9%.近邻剑水蚤(Cyclops vicinus vicinus)喜好生活在Chl.a浓度高、水下光照弱的水体中,而汤匙华哲水蚤(Sinocalanus dorrii)喜好生活在水下光照较好、Chl.a浓度和悬浮物C/N比较低的水体中.透明蟤(Daphnia hyalina)喜好生活在Chl.a浓度较低、光照良好、悬浮物C/P比较高的水体中,但简弧象皮蟤(Bosmina coregoni)喜好生活在Chl.a浓度高、光照较好、悬浮物C/P比较低的水体中.整体来看,食物因子解释了群落结构总变异的19.4%,理化因子解释了18.0%,还剩下62.6%的变异未被解释,表明还有其他更为重要的环境因子未被纳入到分析之中.
        The effects of food quality and quantity on zooplankton community structure are rarely examined in the field study. Here,the relative importance of food quality and quantity as well as physicochemical factors on crustacean zooplankton community was explored in 14 water bodies in spring in Hubei Province,China. The results showed that the density and biomass of crustaceans and the biomass percentage of Daphnia were all significantly and negatively correlated with Kd,while the community mean body length decreased with the increasing of chlorophyll-a( Chl.a) concentration. Canonical correspondence analysis showed that 37.4% of the total variation in crustacean zooplankton community was explained by seven factors. The first four most important factors were listed as Kd,Chl.a concentration,seston C/N and C/P ratios,accounting for 11.5%,8.9%,5.6% and 4.9% of the total variation,respectively. Cyclops vicinus vicinus was found to be inclined to inhabit in waters with high concentration of Chl.a and low irradiance of light,while Sinocalanus dorrii in habitats with good light irradiance,low concentration of Chl.a and low seston C/N ratio. Daphnia hyalina peaked in waters with low concentration of Chl.a and better light irradiance as well as high seston C/P ratio,but Bosmina coregoni liked the habitat with high concentration of Chl.a,better light irradiance and low seston C/P ratio. In general,food factors explained 19.4% of the total variation in crustacean zooplankton community,and physicochemical factors explained 18.0%,while 62.6% were left unexplained,suggesting that there are other important factors that are not involved in the analysis.
引文
[1]Sommer U,Gliwicz ZM,Lampert W et al.The PEG-model of seasonal succession of planktonic events in freshwaters.Archiv für Hydrobiologie,1986,106:422-477.
    [2]Mills EL,Green DM,Schiavone JA.Use of zooplankton size to assess the community structure of fish populations in freshwater lakes.North American Journal of Fisheries Management,1987,7:369-378.
    [3]Romo S,Miracle MR,Villena MJ et al.Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate.Freshwater Biology,2004,49:1593-1607.
    [4]Rhode SC,Pawlowskl M,Tollrian R.The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia.Nature,2001,412:69-72.
    [5]Laspoumaderes C,Modenutti B,Souza MS et al.Glacier melting and stoichiometric implications for lake community structure:zooplankton species distributions across a natural light gradient.Global Change Biology,2013,19:316-326.
    [6]Park S,Müller-Navarra DC,Goldman CR.Seston essential fatty acids and carbon to phosphorus ratios as predictors for Daphnia pulex dynamics in a large reservoir,Lake Berryessa.Hydrobiologia,2003,505:171-178.
    [7]Mc Carthy V,Donohue I,Irvine K.Field evidence for stoichiometric relationships between zooplankton and N and P availability in a shallow calcareous lake.Freshwater Biology,2006,51:1589-1604.
    [8]Andersen T,Hessen DO.Carbon,nitrogen,and phosphorus content of freshwater zooplankton.Limnology and Oceanography,1991,36:807-814.
    [9]Sarpe D,de Senerpont LN,Declerck SAJ et al.Food quality dominates the impact of food quantity on Daphnia life history:possible implications for re-oligotrophication.Inland Waters,2014,4:363-368.
    [10]Park S,Brett MT,Müller-Navarra DC et al.Essential fatty acid content and the phosphorus to carbon ratio in cultured algae as indicators of food quality for Daphnia.Freshwater Biology,2002,47:1377-1390.
    [11]Ravet JL,Brett MT.Phytoplankton essential fatty acid and phosphorus content constraints on Daphnia somatic growth and reproduction.Limnology and Oceanography,2006,51:2438-2452.
    [12]Hessen DO.Determinants of seston C∶P-ratio in lakes.Freshwater Biology,2006,51:1560-1569.
    [13]Mc Carthy V,Irvine K.A test of stoichiometry across six Irish lakes of low-moderate nutrient status and contrasting hardness.Journal of Plankton Research,2010,32:15-29.
    [14]Wagner ND,Yang Z,Scott AB et al.Effects of algal food quality on free amino acid metabolism of Daphnia.Aquatic Sciences,2017,79:127-137.
    [15]Urabe J,Kyle M,Makino W et al.Reduced light increases herbivore production due to stoichiometric effects of light/nutrient balance.Ecology,2002,83:619-627.
    [16]Dickman EM,Newell JM,González MJ et al.Light,nutrients,and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels.Proceedings of the National Academy of Sciences of the United States of America,2008,105:18408-18412.
    [17]Andersen T,Frvig PJ,Hessen DO.Growth rate versus biomass accumulation:different roles of food quality and quantity for consumers.Limnology and Oceanography,2007,52:2128-2134.
    [18]Hessen DO,Andersen T,Faafeng BA.Replacement of herbivore zooplankton species along gradients of ecosystem productivity and fish predation pressure.Canadian Journal of Fisheries and Aquatic Sciences,1995,52:433-442.
    [19]Pinel-Alloul1 B,AndréA,Legendre P et al.Large-scale geographic patterns of diversity and community structure of pelagic crustacean zooplankton in Canadian lakes.Global Ecology and Biogeography,2013,22:784-795.
    [20]Xiong W,Li J,Chen Y et al.Determinants of community structure of zooplankton in heavily polluted river ecosystems.Scientific Reports,2016,6:22043.
    [21]Wang SB,Xie P,Wu SK et al.Crustacean zooplankton distribution patterns and their biomass as related to trophic indicators of 29 shallow subtropical lakes.Limnologica,2007,37:242-249.
    [22]Miiller-Navarra1 D,Lampert W.Seasonal patterns of food limitation in Daphnia galeata:separating food quantity and food quality effects.Journal of Plankton Research,1996,18:1137-1157.
    [23]Hessen DO,Frvig PJ,Andersen T.Light,nutrients,and P:C ratios in algae:grazer performance related to food quality and quantity.Ecology,2002,83:1886-1898.
    [24]Hall SP,Leibold MA,Lytle DA et al.Stoichiometry and planktonic grazer composition over gradients of light,nutrients,and predation risk.Ecology,2004,85:2291-2301.
    [25]De Mott WR,Gulati RD.Phosphorus limitation in Daphnia:evidence from a long term study of three hypereutrophic Dutch lakes.Limnology and Oceanography,1999,44:1557-1564.
    [26]Zhang YL,Qin BQ,Yang LY.Spectral absorption coefficients of particulate matter and chromophoric dissolved organic matter in Meiliang Bay of Lake Taihu.Acta Ecologica Sinica,2006,26:3969-3979.[张运林,秦伯强,杨龙元.太湖梅梁湾水体悬浮颗粒物和CDOM的吸收特性.生态学报,2006,26:3969-3979.]
    [27]"Water and wastewater monitoring and analysis method"editorial board of State Environmental Protection Administration of China ed.Monitoring and analysis methods of water and wastewater:fourth edition.Beijing:China Environmental Science Press,2002.[国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法:第4版.北京:中国环境科学出版社,2002.]
    [28]Zhang M,Yu Y,Yang Z et al.The distribution of phytoplankton along trophic gradients and its mediation by available light in the pelagic zone of large eutrophic lakes.Canadian Journal of Fisheries and Aquatic Sciences,2012,69:1935-1946.
    [29]Jiang XZ,Du NS eds.Fauna Sinica,Crustacea:Freshwater Cladocera.Beijing:Science Press,1979.[蒋燮治,堵南山.中国动物志:淡水枝角类.北京:科学出版社,1979.]
    [30]Shen JR ed.Fauna Sinica,Crustacea:Freshwater Copepoda.Beijing:Science Press,1979.[沈嘉瑞.中国动物志:淡水桡足类.北京:科学出版社,1979.]
    [31]Huang XF,Chen WM,Cai QM eds.Survey,observation and analysis of lake ecology.Beijing:Standards Press of China,1999.[黄祥飞,陈伟民,蔡启铭.湖泊生态调查观测与分析.北京:中国标准出版社,1999.]
    [32]Xu ZL,Chen YQ.Intensity of dominant species of zooplankton in autumn in the East China Sea and Yellow Sea.Journal of Ecology,1989,8:13-15.[徐兆礼,陈亚瞿.东黄海秋季浮游动物优势种聚集强度与鲐(渔场的关系.生态学杂志,1989,8:13-15.]
    [33]Becker C,Boersma M.Resource quality effects on life histories of Daphnia.Limnology and Oceanography,2003,48:700-706.
    [34]Elser JJ,Kyle M,Learned J et al.Life on the stoichiometric knife-edge:effects of high and low food C:P ratio on growth,feeding,and respiration in three Daphnia species.Inland Waters,2016,6:136-146.
    [35]Brooks JL,Dodson SI.Predation,body size,and composition of plankton.Science,1965,150:28-35.
    [36]Sun X,Tao M,Qin B et al.Large-scale field evidence on the enhancement of small-sized cladocerans by Microcystis blooms in Lake Taihu,China.Journal of Plankton Research,2012,34:853-863.
    [37]Iwabuchi T,Urabe J.Phosphorus acquisition and competitive abilities of two herbivorous zooplankton,Daphnia pulex and Ceriodaphnia quadrangular.Ecological Research,2010,25:619-627.
    [38]Wang SB.Zooplankton ecology in shallow lakes along the middle and lower reaches of the Yangtze River[Dissertation].Wuhan:Institute of Hydrobiology,Chinese Academy of Sciences,2008.[王松波.长江中下游浅水湖泊的浮游动物生态学研究[学位论文].武汉:中国科学院水生生物研究所,2008.]
    [39]Bays JS,Crisman TL.Zooplankton and trophic state relationships in Florida lakes.Canadian Journal of Fisheries and Aquatic Sciences,1983,40:1813-1819.
    [40]Jeppesen E,Lauridsen TL,Mitchell SF et al.Trophic structure in the pelagial of 25 shallow New Zealand lakes:changes along nutrient and fish gradients.Journal of Plankton Research,2000,22:951-968.
    [41]Havens KE,Elia AC,Taticchi MI et al.Zooplankton-phytoplankton relationships in shallow subtropical versus temperate lakes Apopka(Florida,USA)and Trasimeno(Umbria,Italy).Hydrobiologia,2009,628:165-175.
    [42]Geddes P.Experimental evidence that subsidy quality affects the temporal variability of recipient zooplankton communities.Aquatic Sciences,2015,77:609-621.
    [43]Prater C,Wagner ND,Frost PC.Effects of calcium and phosphorus limitation on the nutritional ecophysiology of Daphnia.Limnology and Oceanography,2016,61:268-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700