用户名: 密码: 验证码:
超临界压力航空煤油耦合传热计算方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on Coupling Method of Conjugate Heat Transfer of Structure/Aviation Kerosene Under Supercritical Pressure
  • 作者:浦航 ; 李素芬 ; 东明 ; 焦思 ; 尚妍
  • 英文作者:PU Hang;LI Su-Fen;DONG Ming;JIAO Si;SHANG Yan;School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology;
  • 关键词:超临界压力 ; 耦合传热 ; 航空煤油 ; 数值计算
  • 英文关键词:supercritical pressure;;conjugate heat transfer;;aviation kerosene;;numerical simulation
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:大连理工大学能源与动力学院海洋能源利用与节能教育部重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金资助项目(No.51576027)
  • 语种:中文;
  • 页:GCRB201904024
  • 页数:5
  • CN:04
  • ISSN:11-2091/O4
  • 分类号:157-161
摘要
本文以超燃冲压发动机再生冷却技术为研究背景,对超临界压力航空煤油/壁面耦合传热计算方法进行讨论,分析了固体域与流体域耦合策略对于计算结果的影响。通过改变流-固界面的热边界条件,研究不同耦合策略的数值稳定性,并对计算效率进行了对比。结果表明:TFFB方法在求解毕渥数远小于1的问题时稳定性较差;hFFB方法在准确程度和计算效率上均表现最佳;使用Robin边界条件可以提高计算稳定性,合理选择虚拟对流换热系数可以提高计算效率。
        Aiming at the regenerative cooling process of scramjet engines, the coupling method of conjugate heat transfer of structure/aviation kerosene at supercritical pressure is discussed. The influence of coupling procedures on the steady state solution is analyzed, both numerical stability and computational cost are compared by imposing different interface conditions. The results indicate that the TFFB procedure is unstable when the physical Biot number is much smaller than one. The hFFB procedure performs best in regard of both accuracy and efficiency. Numerical stability could be improved by imposing Robin condition on one side of the interface. Besides, choosing a reasonable value of the virtual heat transfer coefficient could improve the computational efficiency.
引文
[1] QIN Jiang, ZHANG Silong, BAO Wen, et al. Thermal Management Method of Fuel in Advanced Aeroengines[J]. Energy, 2013, 49(1):459-468
    [2]陈尊敬,王雷雷,孟华.考虑发动机冷却通道固壁内耦合导热影响的低温甲烷超临界压力传热研究[J].航空学报,2013,(1):8-18CHEN Zunjing, WANG Leilei, MENG Hua. Study of Heat Transfer of Cryogenic Methane under Supercritical Pressure with Consideration of Thermal Conduction in Engine Cooling Channel Walls[J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2013, 34(1):8-18
    [3]王雷雷,徐可可,孟华.航空煤油超临界压力流/固/热耦合数值模拟[J].工程热物理学报,2013, 34(7):1357-1360WANG Leilei, XU Keke, MENG Hua. Numerical Study of Conjugate Heat Transfer of Aviatioin Kerosene at Supercritical Pressures[J]. Journal of Engineering Thermophysics, 2013, 34(7):1357-1360
    [4] LIANG Jianhan, LIU Zhiqi, PAN Yu. Coupled Heat Transfer of Supercritical n-Decane in a Curved Cooling Channel[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(3):635-641
    [5] Jiang H, Ervin J, West Z, et al. Turbulent Flow, Heat Transfer Deterioration, and Thermal Oxidation of Jet Fuel[J]. Journal of Thermophysics and Heat Transfer, 2013,27(4):668-678
    [6] ZHU Yinhai, LIU Bo, JIANG Peixue. Experimental and Numerical Investigations on n-Decane Thermal Cracking at Supercritical Pressures in a Vertical Tube[J]. Energy&Fuels, 2014, 28(1):466-474
    [7] TAO Zhi, CHENG Zeyuan, ZHU Jianqin, et al. Effect of Turbulence Models on Predicting Convective Heat Transfer to Hydrocarbon Fuel at Supercritical Pressure[J]. Chinese Journal of Aeronautics, 2016, 29(5):1247-1261
    [8] Pizzarelli M, Nasuti F, Onofri M. Coupled Wall Heat Conduction and Coolant Flow Analysis for Liquid Rocket Engines[J]. Journal of Propulsion&Power, 2013, 29(1):34-41
    [9] Pizzarelli M, Nasuti F, Onofri M. Effect of Cooling Channel Aspect Ratio on Rocket Thermal Behavior[J]. Journal of Thermophysics&Heat Transfer, 2014, 28(3):410-416
    [10] PU Hang, LI Sufen, DONG Ming, et al. Development and Validation of a Conjugate Heat Transfer Code for Regenerative Cooling Structure with OpenFOAM[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference, American Institute of Aeronautics and Astronautics, 2017
    [11] Verstraete T, Scholl S. Stability Analysis of Partitioned Methods for Predicting Conjugate Heat Transfer[J]. International Journal of Heat and Mass Transfer, 2016, 101:852-869
    [12] Duchaine F, Corpron A, Pons L, et al. Development and Assessment of a Coupled Strategy for Conjugate Heat Transfer with Large Eddy Simulation:Application to a Cooled Turbine Blade[J]. International Journal of Heat and Fluid Flow, 2009, 30(6):1129-1141
    [13] OpenFOAM Foundation. OpenFOAM User Guide[M].OpenFOAM Foundation, 2015
    [14] ZHANG Chunben, XU Guoqiang, GAO Lin, et al. Experimental Investigation on Heat Transfer of a Specific Fuel(RP-3)Flows Through Downward Tubes at Supercritical Pressure[J]. Journal of Supercritical Fluids, 2012, 72(9):90-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700