用户名: 密码: 验证码:
太阳能集热钴-水纳米流体粘度特性实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Study on the viscosity of Co-H_2O Nanofluids for Solar Heat Collection
  • 作者:闫格尼 ; 何钦波 ; 郑兆志
  • 英文作者:YAN Geni;HE Qinbo;ZHENG Zhaozhi;Guangdong University Heat Pump Engineering Technology Development Center,Shunde Polytechnic;
  • 关键词:热工学 ; 纳米流体 ; 粘度 ; 太阳能
  • 英文关键词:Pyrology;;Nanofluid;;Viscosity;;Solar energy
  • 中文刊名:SDZX
  • 英文刊名:Journal of Shunde Polytechnic
  • 机构:顺德职业技术学院广东高校热泵工程技术开发中心;
  • 出版日期:2018-07-30
  • 出版单位:顺德职业技术学院学报
  • 年:2018
  • 期:v.16;No.54
  • 语种:中文;
  • 页:SDZX201803005
  • 页数:4
  • CN:03
  • ISSN:44-1605/Z
  • 分类号:26-29
摘要
采用两步法制备了钴-水纳米流体,对纳米钴粒子的质量分数、粒径以及纳米流体的温度、pH值影响基液粘度特性进行了实验研究。结果表明:去离子水的粘度随着纳米颗粒的添加不断增加,温度为40℃,钴粒子质量分数为0.01%时,其粘度相比去离子水提高了0.61%,而质量分数增大到0.1%时,其粘度比去离子水提高了6.43%。温度越高,钴-水纳米流体的粘度越小,并且质量分数越大的纳米流体,温度对其粘度的影响越大,粒径越小的钴-水纳米流体粘度越大。
        Co-H2 O nanofluids were prepared by two-step method. The effects of particle mass fraction, diameter, temperature and pH on the viscosity of nanofluids were investigated. The results show that the viscosity of deionized water increased with the addition of nanoparticles. At 40 ℃, the viscosity of Co-H2 O nanofluids with the mass fraction of 0.01% was only 0.61% higher than that of deionized water, while the mass fraction increased as large as 0.1%, its viscosity increased by 6.43% than deionized water. With the increase of temperature, the viscosity of nanofluid decreases gradually, and the larger the mass fraction of nanofluid is, the more obvious its viscosity changes with temperature. The smaller the particle size of the nanofluid, the greater the viscosity.
引文
[1]PRASHER R,SONG D,WANG J L.Measurements of nanofluid viscosity and its implications for thermal applications[J].Applied Physics Letters,2006,89(13):133108.1-133108.3.
    [2]CHEN H S,DING Y L,LAPKIN A,et al.Rheological behaviour of ethylene glycoltitanate nanotube nanofluids[J].J Nanopart Res,2009,11:1513–1520.
    [3]NGU Y EN C T,DESGR ANGES F,ROY G,et al.Temperature and particlessize dependent viscosity data for water-based nanofluids–Hysteresis phenomenon[J].Int J Heat Fluid Flow,2007,28:1492–506.
    [4]NUMBURU P K,KULKARNI D P,DANDEKAR A.Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids[J].Micro Nano Lett,2007,2:67–71.
    [5]KOLE M,DEY T K.Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant[J].J Phys D Appl Phys,2010,43:315501.
    [6]DAS S K,PUTRA N,ROETZEL W.Pool boiling characteristics of nano-fluids[J].Int.J.Heat Mass Trans,2003,46:851-862.
    [7]郑兆志,何钦波.直接吸收式太阳能集热纳米流体光热特性研究[J].真空科学与技术学报,2015,35(1):84-88.
    [8]何钦波,闫格尼,郑兆志,等.磁场强化Co-H2O纳米流体直接光吸收性能实验研究[J].真空科学与技术学报,2017,37(7):1-7.
    [9]郑兆志,何钦波.直接吸收式太阳能集热纳米流体光热特性研究[J].真空科学与技术学报,2015,35(1):84-88.
    [10]李梦龙.化学数据速查手册[M].北京:化学工业出版社,2003.3.
    [11]KOLE M,DEY T K.Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant[J].J Phys D Appl Phys,2010,43:315501.
    [12]李泽梁,李俊明,王补宣.SDBS对氧化铜纳米颗粒悬浮液粘度的影响[J].工程热物理学报,2003,24(5):849-851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700