用户名: 密码: 验证码:
脊髓型颈椎病的不同频段低频振幅静息态功能磁共振研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Frequency-dependent Alterations in Fractional Amplitude of Low-Frequency Fluctuations in Cervical Spondylotic Myelopathy:Resting-State fMRI Study
  • 作者:章晨蕾 ; 谭永明 ; 何来昌 ; 钟军 ; 郭建强 ; 周福庆
  • 英文作者:ZHANG Chenlei;TAN Yongming;HE Laichang;Department of Radiology,the First Affiliated Hospital of Nanchang University;
  • 关键词:脊髓型颈椎病 ; 静息态功能磁共振成像 ; 低频振幅
  • 英文关键词:Crvical spondylotic myelopathy;;Resting-state functional magnetic resonance imaging;;Low-frequency fluctuation
  • 中文刊名:LCFS
  • 英文刊名:Journal of Clinical Radiology
  • 机构:南昌大学第一附属医院影像科;
  • 出版日期:2019-04-20
  • 出版单位:临床放射学杂志
  • 年:2019
  • 期:v.38;No.345
  • 基金:中国博士后科学基金资助项目(编号:2013M541877);; 国家自然科学基金资助项目(编号:81460329);; 江西省卫生计生委科技计划项目(编号:20155111)
  • 语种:中文;
  • 页:LCFS201904003
  • 页数:5
  • CN:04
  • ISSN:42-1187/R
  • 分类号:10-14
摘要
目的探讨脊髓型颈椎病(CSM)患者静息状态下不同频段(Slow-4:0.027~0.073 Hz;Slow-5:0.01~0.027 Hz)低频振幅(ALFF)脑功能活动特点。方法 43例CSM患者及41例健康对照组(年龄、性别、受教育程度均匹配)(HC)均接受头颅静息态功能磁共振成像(rs-fMRI)扫描。应用rs-fMRI数据处理助手(DPARSF)进行数据预处理,运用ALFF算法,得到每个受试者在Slow-4和Slow-5频段上的脑图,应用SPM8软件包进行全因素方差(ANOVA)分析CSM组和HC组及不同频段脑功能活动特点。之后,对CSM组和HC组采用两独立样本t检验分别观察两个频段ALFF值差异,同时分析ALFF值差异脑区与临床功能评估之间的相关性。结果不同频段间一些脑区的ALFF值存在差异,与HC组比较,CSM组在Slow-5亚频段ALFF值增高的脑区包括左侧距状裂及其周围皮层(体素数目为171,P=4.7688),减低的脑区包括右侧枕上回(体素数目分别为131,P=-3.9288)。CSM组在Slow-4亚频段ALFF值增高的脑区有左侧距状裂及其周围皮层(体素数目为265,P=4.5445),减低的区域有左侧小脑(Crus2区)、右侧丘脑、右侧颞上回(体素数目分别为189、185、122,P值分别为-3.2871、-5.0553、-4.824)。结论 CSM患者存在多个与认知功能相关脑区神经元的自发活动异常,并且CSM患者异常活动脑区在不同亚频段具有不同的空间分布特点。
        Objective To investigate the characteristics of low-frequency amplitude(ALFF) brain function in different frequency bands(Slow-4: 0.027~0.073 Hz; Slow-5:0.01~0.027 Hz) in patients with cervical spondylotic myelopathy(CSM). Methods Forty-three patients with CSM and 41 healthy controls(matched age, gender, and education level)(HC) underwent resting-state functional magnetic resonance imaging(rs-fMRI). The rs-fMRI data processing assistant(DPARSF) was used for data preprocessing. The ALFF algorithm was used to obtain the brain map of each subject in the Slow-4 and Slow-5 bands. The SPM8 software package was used for the all-factor variance(ANOVA). The characteristics of brain function activities in CSM group and HC group and different frequency bands were analyzed. Then, two independent sample t-tests were used to observe the difference of ALFF values in the two bands for the CSM group and the HC group, and the correlation between the ALFF value difference brain region and clinical function evaluation was analyzed. Results There were differences in the ALFF values of some brain regions between different frequency bands. Compared with the HC group, the brain regions of the CSM group with increased ALFF values in the Slow-5 sub-band include the left lateral sulcus and its surrounding cortex(the number of voxels is 171, P=4.7688), the reduced brain area includes the right upper pillow(the number of voxels is 131, P=-3.9288). In the CSM group, the left marginal fissure and its surrounding cortex(the number of voxels is 265, P=4.5445) in the brain region with increased ALFF value in the Slow-4 sub-band. The reduced area has the left cerebellum(Crus2 area) and the right side. The thalamus and the right temporal iliac crest(the number of voxels are 189, 185, 122, respectively, P values are-3.2871,-5.0553,-4.824). Conclusion There are multiple spontaneous activity abnormalities in CSM patients with cognitive function-related brain regions, and the abnormal active brain regions of CSM patients have different spatial distribution characteristics in different sub-bands.
引文
1 Tracy JA,Bartleson JD.Cervical spondylotic myelopathy[J].The neurologist,2010,16:176-187.
    2 Yarbrough CK,Murphy RK,Ray WZ,et al.The natural history and clinical presentation of cervical spondylotic myelopathy[J].Adv Orthop,2012,2012:480643.
    3 Bohlman HH,Emery SE.The pathophysiology of cervical spondylosis and myelopathy[J].Spine,1988,13:843-846.
    4 Ogino H,Tada K,Okada K,et al.Canal diameter,anteroposterior compression ratio,and spondylotic myelopathy of the cervical spine[J].Spine,1983,8:1-15.
    5 Tator CH.Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury [J].J Spinal Cord Med,1996,19:206-214.
    6 Nardone R,Briqo F,Seidl M,et al.Functional brain reorganization after spinal cord injury:systematic review of animal and human studies[J].Brain Res,2013,1504:58-73.
    7 Baron EM,Young WF.Cervical spondylotic myelopathy:a brief review of its pathophysiology,clinical course,and diagnosis[J].Neurosurgery,2007,60:S35-41.
    8 Freund P,Weiskopf N,Ward NS,et al.Disability,atrophy and cortical reorganization following spinal cord injury[J].Brain ,2011,134:1610-1622.
    9 胡忠婕,陈楠,宋海庆,等.遗忘型轻度认知障碍和阿尔茨海默病的多模态MRI研究进展[J].中华放射学杂志,2014,48:517-520.
    10 Zuo XN,Di Martino A,Kelly C,et al.The oscillating brain:complex and reliable [J].Neuroimage,2010,49:1432-1445.
    11 Logothetis NK,Pauls J,Augath M,et al.Neurophysiological investigation of thebasis ofthe fMRI signal[J].Nature,2001,412:150-157.
    12 Britton JC,Phan KL,Taylor SF,et al.Corticolimbic blood flow in posttraumatic stress disorder during script-driven imagery[J].Biol Psychiatry,2005,57:832-840.
    13 Kiviniemi V,Jauhiainen J,Tervonen O,et al.Slow vasomotor fluctuation in fMRI of anesthetized child brain[J].Magn Reson Med,2000,44:373-378.
    14 Zhou F,Gong H,Lin X,et al.Increased Low-Frequency Oscillation Amplitude of Sensorimotor Cortex Associated with the Severity of Structural Impairment in Cervical Myelopathy[J].PLOS One,2014,9:104442.
    15 Wang Z,Zhang Z,Liao W,et al.Frequency-dependent amplitude alterations of resting-state spontaneous fluctuations in idiopathic generalized epilepsy[J].Epilepsy Res,2014,108:853-860.
    16 Penttonen M,Buzsaki G.Natural logarithmic relationship between brain oscillators[J].Thalamus & Related Systems,2003,2:145-152.
    17 肖慧,吴应行,倪萍,等.阿尔茨海默病不同频段低频振幅静息态功能磁共振成像研究[J].中国医疗设备,2014,29:5-10.
    18 Han Y,Lui S,Kuang W,et a1.Anatomical and functional deficits in patients with amnestic mild cognitive impairment[J].PLoS One,2012,7:e28664.
    19 谭永明,周福庆,何来昌,等.脊髓型颈椎病患者减压术后感觉运动皮层局部一致性改变的静息态功能MRI研究[J].中华放射学杂志,2016,50:495-499.
    20 赵莹.脊髓型颈椎病认知能力改变及其静息态功能连接的fMRI研究[J].天津医科大学,2015.
    21 Balsters JH,Whelan CD,Robertson IH,et a1.Cerebellum and cognition:evidence for the encoding of higher order rules[J].Cereb Cortex,2013,23:1433-1443.
    22 Stoodley CJ,Schmahmarm JD.Functional topography in the human cerebellum:a meta-analysis of neuroirffaging studies[J].Neuroimage,2009,44:489-501.
    23 魏有东,朱丹,董为伟,等.小脑认知情感性综合征的临床分析[J].重庆医科大学学报,2010,35:281-283.
    24 Partridge J,Rayner J,Awan S.The cerebellar cognitive affective syndrome[J].BrJ Hosp Med(Lond),2010,71:712-713.
    25 Middleton FA,Stfick PL.Basal ganglia and cerebellar loops:motor and cognitive circuits[J].Brain Res Brain Res Rev,2000,31:236-250.
    26 D'Angelo E,Casali S.Seeking a unified framework for cerebellar function and dysfunction:from circuit operations to cognition[J].Front Neural Circuits,2012,6:116.
    27 陈以慈.锥体系和锥体外系功能解剖学的近代概念[J].神经精神疾病杂志,1980,6:375-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700