用户名: 密码: 验证码:
厌氧条件下环境因子对泥炭土壤温室气体排放的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of environmental factors on greenhouse gas emissions from peat soil under anaerobic conditions
  • 作者:张尹 ; 于志国 ; 张乐 ; 陈袁波 ; 黄婷 ; 胡颖
  • 英文作者:ZHANG Yin;YU Zhi-guo;ZHANG Le;CHEN Yuan-bo;HUANG Ting;HU Ying;School of Hydrology and Water Resources, Nanjing University of Information Science & Technology;
  • 关键词:泥炭沼泽 ; 温室气体排放 ; 气候变化 ; 厌氧呼吸
  • 英文关键词:northern peatland;;emission of greenhouse gases;;climate change;;anaerobic respiration
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:南京信息工程大学水文与水资源工程学院;
  • 出版日期:2019-06-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:v.38;No.286
  • 基金:国家自然科学基金项目(41601090,41877337);; 江苏省自然科学基金项目(BK20160950);; 江苏省高校自然科学基金项目(16KJB170009)~~
  • 语种:中文;
  • 页:NHBH201906026
  • 页数:10
  • CN:06
  • ISSN:12-1347/S
  • 分类号:202-211
摘要
为研究环境因子对寒温带泥炭土壤温室气体排放的影响,选取加拿大Mer Bleue泥炭沼泽的泥炭土壤为培养介质,利用室内微宇宙培养实验,分别以培养温度(5.4、13.1、20.1℃)、pH值(4、5、6、7)以及泥炭土底质(采样深度50、100、150、250 cm)为环境因子,探讨其对二氧化碳(CO_2)和甲烷(CH_4)排放的影响程度。结果表明,在不同环境因子处理组中CO_2和CH_4的初始产生速率范围分别为0.399~2.27μmol·g~(-1)DW·d~(-1)和0.018~0.180μmol·g~(-1)DW·d~(-1),排放阈值范围分别为1.38~91.6μmol·g~(-1)DW和1.12~9.02μmol·g~(-1)DW。温度越高,CO_2和CH_4的产生速率越快,且温度对CH_4的影响比对CO_2的影响更明显。pH值分别与CO_2的初始产生速率和阈值呈显著正相关,而CH_4的初始产生速率受pH值的影响不显著,在pH值为5~6时CH_4排放阈值最大。对于采集深度不同的泥炭土,深度为50 cm处的CO_2和CH_4排放量最多,而深度为50 cm以下的气体排放量极低。研究表明,不同环境因子处理组表现出不同的初始产生速率和阈值,说明环境因素对天然泥炭地中相对稳定的碳储存存在较大影响。
        Peatlands are of great importance as carbon stores and are a critical source for releasing carbon dioxide(CO_2)and methane(CH_4)under changing circumstances, e.g., climate change. Although peatlands cover only 3% of the land and freshwater surface of the planet, about one-third of the total world soil carbon are stored in boreal and subarctic peat. Thus, investigating the influence of key factors on organic matter mineralization processes is urgently required for greater understanding of carbon cycling in northern peatland. In the current study, we employed incubation experiments to characterize the influence of temperature(5.4~20.1 ℃), pH value(4~7), and peat quality(50~250 cm)on CO_2 and CH_4 release from the water-saturated, anoxic layer in northern peatland. The results showed that the range of initial production rates of CO_2 and CH_4 for the different treatments were 0.399~2.27 μmol·g~(-1) DW·d~(-1) and 0.018~0.180 μmol·g~(-1) DW·d~(-1),respectively, and the range of thresholds were 1.38~91.6 μmol·g~(-1) DW and 1.12~9.02 μmol·g~(-1) DW, respectively. The initial production rates of CO_2 and CH_4 increased significantly with temperature, but the effect was greater on CH_4. The pH value was positively correlated with the initial production rate and the threshold value of CO_2, whereas the initial production rate of CH_4 was not significantly affected by pH value, and the threshold of CH_4 was high, at pH 5~6. For the peat soil sampled from different depths, the peat soil at a depth of 50 cm had the highest CO_2 and CH_4 emissions, whereas the peat from depths greater than 50 cm presumably did not produce any CO_2 or CH_4. The results indicate that environmental factors have great impacts on carbon storage in natural peatlands.
引文
[1]Limpens J,Berendse F,Blodau C,et al.Peatlands and the carbon cycle:From local processes to global implications-a synthesis[J].Biogeosciences,2008,5(6):1475-1491.
    [2]Dierssen K,Dierssen B.Moore[M].Stuttgart:Ulmer,2001:44-50.
    [3]郝庆菊,王跃思,宋长春,等.三江平原湿地土壤CO2和CH4排放的初步研究[J].农业环境科学学报,2004,23(5):846-851.HAO Qing-ju,WANG Yue-si,SONG Chang-chun,et al.Primary study on CO2 and CH4 emissions from wetland soils in the Sanjiang plain[J].Journal of Agro-Environment Science,2004,23(5):846-851.
    [4]Gorham E.Northern peatlands:Role in the carbon cycle and probable responses to climatic warming[J].Ecological Applications,1991,1(2):182-195.
    [5]滕良慧.全球气候变化背景下金川泥炭沼泽湿地水文动态及影响因素研究[D].长春:东北师范大学,2016.TENG Liang-hui.Study of wetland hydrological dynamics and influencing factors in Jinchuan peatland,under the background of global climate change[D].Changchun:Northeast Normal University,2016.
    [6]Bernstein L.IPCC(2007)Climate change 2007:Synthesis report.Intergovernmental panel on climate change[J].Encyclopedia of Energy Natural Resource&Environmental Economics,2007,27(1):48-56.
    [7]Aselmann I,Crutzen P J.Global distribution of natural freshwater wetlands and rice paddies,their net primary productivity,seasonality and possible methane emissions[J].Journal of Atmospheric Chemistry,1989,8(4):307-358.
    [8]Fourth Assessment Report of the Working Group I Report.Changes in atmospheric constituents and in radiative forcing[R].Geneva:IPCC(Intergovernmental panel on climate change),2007.
    [9]朱晓艳.三江平原草本泥炭沼泽温室气体排放及其对气候变化的响应[D].北京:中国科学院大学,2015.ZHU Xiao-yan.The greenhouse gas emissions from the herbaceous peatland in the Sanjiang plain and the responses to climate change[D].Beijing:University of Chinese Academy of Sciences,2015.
    [10]翟生强,史长光,杜乐山,等.若尔盖泥炭地地下水位和土壤温度对二氧化碳排放的影响[J].湿地科学,2015,13(3):332-337.ZHAI Sheng-qiang,SHI Chang-guang,DU Le-shan,et al.Effect on CO2 emissions of water tables and soil temperatures in Zoigêpeatlands[J].Wetland Science,2015,13(3):332-337.
    [11]欧阳扬,李叙勇.干湿交替频率对不同土壤CO2和N2O释放的影响[J].生态学报,2013,33(4):1251-1259.OUYANG Yang,LI Xu-yong.Impacts of drying-wetting cycles on CO2 and N2O emissions from soils in different ecosystems[J].Acta Ecologica Sinica,2013,33(4):1251-1259.
    [12]包振宗,侯艳艳,赵成义,等.干湿交替和模拟氮沉降对巴音布鲁克高寒湿地土壤CO2排放的影响[J].农业环境科学学报,2018,37(3):598-604.BAO Zhen-zong,HOU Yan-yan,ZHAO Cheng-yi,et al.Effect of alternating wetting and drying and simulated nitrogen deposition on soil CO2 emission in alpine wetlands of Bayinbulak[J].Journal of AgroEnvironment Science,2018,37(3):598-604.
    [13]Scanlon D,Moore T.Carbon dioxide production from peatland soil profiles:The influence of temperature,oxic/anoxic conditions and substrate[J].Soil Science,2000,165(2):153-160.
    [14]Goldhammer T,Blodau C.Desiccation and product accumulation constrain heterotrophic anaerobic respiration in peats of an ombrotrophic temperate bog[J].Soil Biology&Biochemistry,2008,40(8):2007-2015.
    [15]Moore T R,Dalva M.The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils[J].European Journal of Soil Science,1993,44(4):651-664.
    [16]Blodau C,Siems M.Drainage-induced forest growth alters belowground carbon biogeochemistry in the Mer Bleue bog,Canada[J].Biogeochemistry,2012,107(1/2/3):107-123.
    [17]Sander R.Compilation of Henry′s law constants for inorganic and organic species of potential importance in environmental chemistry(Version 3)[J].Estuarine Coastal&Shelf Science,1999,115(1):63-74.
    [18]Dunfield P,Knowles R,Dumont R,et al.Methane production and consumption in temperate and subarctic peat soils:Response to temperature and pH[J].Soil Biology&Biochemistry,1993,25(3):321-326.
    [19]Sadava D,Orians G,Heller H C,et al.Purves,biologie[M].Springer Spektrum,2012:193-232.
    [20]Bergman I,Bo H S,Nilsson M.Regulation of methane production in a Swedish acid mire by pH,temperature and substrate[J].Soil Biology&Biochemistry,1998,30(6):729-741.
    [21]Blodau C,Roulet N T,Heitmann T,et al.Belowground carbon turnover in a temperate ombrotrophic bog[J].Global Biogeochemical Cycles,2007,21(1):GB1021.
    [22]Blodau C,Siems M,Beer J.Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats[J].Environmental Science&Technology,2011,45(23):9984-9989.
    [23]Cory R M,Mcknight D M.Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J].Environmental Science&Technology,2005,39(21):8142-8149.
    [24]Succow M,Joosten H.Landschafts?kologische moorkunde[M].Stuttgart:E.Schweizerbart′sche Verlagsbuchhandlung,2001:8-17.
    [25]Bleam W F.Soil and environmental chemistry[M]//Bleam W F.Soil and environmental chemistry(2nd Edition).Amsterdam:Elservier,2012:449-462.
    [26]Diekert G,Wohlfarth G.Metabolism of homoacetogens[J].Antonie Van Leeuwenhoek,1994,66(1/2/3):209-221.
    [27]Svensson B H.Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen[J].Appl Environ Microbiol,1984,48(2):389-394.
    [28]Conrad R,Schütz H,Babbel M.Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil[J].Fems Microbiology Letters,1987,45(5):281-289.
    [29]Yavitt J B,Lang G E,Wieder R K.Control of carbon mineralization to CH4,and CO2,in anaerobic,Sphagnum-derived peat from Big Run Bog,West Virginia[J].Biogeochemistry,1987,4(2):141-157.
    [30]Blodau C,Deppe M.Humic acid addition lowers methane release in peats of the Mer Bleue Bog,Canada[J].Soil Biology&Biochemistry,2012,52(3):96-98.
    [31]方芳,刘国强,郭劲松,等.活性污泥法对水溶性腐植酸的去除效能与机制研究[J].环境科学,2008,29(8):2266-2270.FANG Fang,LIU Guo-qiang,GUO Jing-song,et al.Removal efficiency and mechanism of aqueous humic acids by activated sludge process[J].Environmental Science,2008,29(8):2266-2270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700