用户名: 密码: 验证码:
长白山区金川泥炭沼泽土壤酶活性特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics of Soil Enzyme Activity of Peat Bog in Jinchuan,Changbai Mountain
  • 作者:韩园园 ; 王铭 ; 王升忠 ; 董彦民 ; 刘双双 ; 徐志伟
  • 英文作者:HAN Yuanyuan;WANG Ming;WANG Shengzhong;DONG Yanmin;LIU Shuangshuang;XU Zhiwei;Institute for Peat and Mire Research, Northeast Normal University;Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection;Jilin Provincical Key Laboratory for wetland Ecological Processes and Environmental Change in the Changbai Mountains;
  • 关键词:泥炭沼泽 ; 土壤酶活性 ; 植物群落 ; 草丘微地貌
  • 英文关键词:peat bog;;soil enzyme;;plant community;;hummock microtopography
  • 中文刊名:KXSD
  • 英文刊名:Wetland Science
  • 机构:东北师范大学泥炭沼泽研究所;东北师范大学国家环境保护湿地生态与植被恢复重点实验室;长白山湿地与生态吉林省联合重点实验室;
  • 出版日期:2018-10-15
  • 出版单位:湿地科学
  • 年:2018
  • 期:v.16
  • 基金:国家重点研发计划项目(2016YFC0500407);; 科技部基础性工作专项项目(201113207);; 国家自然科学基金项目(41501090和41871081);; 吉林省优秀青年基金项目(20180520099JH)资助
  • 语种:中文;
  • 页:KXSD201805014
  • 页数:8
  • CN:05
  • ISSN:22-1349/P
  • 分类号:99-106
摘要
土壤酶是泥炭地生态系统碳循环过程的重要参与者,影响着泥炭沼泽土壤有机碳库的变化及其在全球碳循环中的作用。以长白山区金川泥炭沼泽为研究对象,于2017年8月17日,分别采集臌囊薹草(Carex schmidtii)草丘、丘间和油桦(Betula fruticosa)群落下0~50 cm深度土壤,测定其3种水解酶(β-1,4-葡萄糖苷酶、β-1,4-N-乙酰葡糖胺糖苷酶、酸性磷酸酶)和1种氧化酶(过氧化物酶)的活性,并分析其影响因素。研究结果表明,在0~10cm深度,油桦群落下土壤中β-1,4-葡萄糖苷酶活性平均值为(2 116.78±65.41) nmol/(g·h),显著高于臌囊薹草草丘和丘间土壤(n=3,p<0.05);土壤酸性磷酸酶和过氧化物酶活性平均值分别为(4 786.57±738.84) nmol/(g·h)和(8.98±0.377) nmol/(g·h),显著高于臌囊薹草丘间土壤(n=3,p<0.05),与草丘土壤无显著差异(n=3,p>0.05);油桦群落下的土壤中β-1,4-N-乙酰葡糖胺糖苷酶活性平均值为(615.67±43.49) nmol/(g·h),显著低于臌囊薹草草丘土壤(n=3,p<0.05)。在臌囊薹草草丘土壤中,β-1,4-葡萄糖苷酶、β-1,4-N-乙酰葡糖胺糖苷酶、酸性磷酸酶和过氧化物酶活性都显著高于丘间土壤(n=3,p<0.05)。在0~50 cm深度土壤中,随着土壤深度的增加,土壤β-1,4-葡萄糖苷酶、β-1,4-N-乙酰葡糖胺糖苷酶活性在臌囊薹草草丘和丘间呈单峰型变化,而在油桦群落下的土壤中基本保持不变。土壤酸性磷酸酶活性在臌囊薹草草丘和丘间10~20 cm深度土壤中达到最大,而在油桦群落下的0~10 cm深度土壤中最大。在臌囊薹草群落草丘和油桦群落下的土壤中,随着土壤深度的增加,土壤过氧化物酶活性波动变化,而在臌囊薹草丘间土壤中,过氧化物酶活性逐渐增大。土壤含水量和全氮含量是影响泥炭沼泽土壤酶活性空间异质性的主要因子。
        Soil enzyme is an important participants of the carbon cycling in peatland, which influencing the soil organic carbon pool in peatland. The samples were collected from the 0-50 cm depth's soils of the Carex schmidtii hummock and gap and under Betula fruticosa community in Jinchuan peat bog of Changbai Mountain, Northeast of China on August 17, 2017. The activities of three hydrolyzing enzymes(β-1,4-glucosidase, β-1,4-N-acetylglucosaminidase and acid phosphatase) and one oxidase(peroxidase) were determined, and the influencing factors were analysed. At the depth of 0-10 cm, β-1,4-glucosidase activity was(2 116.78±65.41) nmol/(g· h) in the soil with Betula fruticosa community and significantly higher than that of Carex schmidtii hummock and gap(n=3, p<0.05). Soil acid phosphatase and peroxidase activities were(4 786.57±738.84) nmol/(g· h) and(8.98±0.377) nmol/(g· h) in the soil with Betula fruticosa community, and significantly higher than those of Carex schmidtii gap(n=3, p<0.05), but there was no significant difference with the Carex schmidtii hummock. The soil β-1,4-N-acetylglucosaminidase activity was(2 116.78 ± 65.41)nmol/(g · h) in Betula fruticosa community and significantly lower than that of the hummock of the Carex schmidtii(n=3, p<0.05). In the Carex schmidtii hummock, the soil β-1,4-glucosidase, β-1,4-Nacetylglucosaminidase, acid phosphatase and peroxidase activities were significantly higher than those in the gap(n=3, p<0.05). At the depth of 0-50 cm, soil β-1,4-glucosidase and β-1,4-N-acetylglucosaminidase activities showed single peak variations with the depth increasing in Carex schmidtii hummock and gap, but no differences among different depths in the soil with Betula fruticosa community. Soil acid phosphatase activity was highest at 10-20 cm depth in Carex schmidtii hummock and gap, but highest at 0-10 cm depth in the soil with Betula fruticosa community. Soil peroxidase activity fluctuated with the increase of the depth in the soil with Betula fruticosa community and the Carex schmidtii hummock, while increased gradually in the Carex schmidtii gap. Soil water content and total nitrogen contents were the main environmental factors affecting the spatial heterogeneity of soil enzyme activities in peat mire.
引文
[1]Gorham E. Northern peatlands:role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications,1991, 11(2):182-195.
    [2]Turunen J, Tomppo E, Tolonen K, et al. Estimating carbon accumulation rates of undrained mires in Finland-application to boreal and subarctic regions[J]. Holocene, 2002, 1212(1):69-80.
    [3]Yu Z, Loisel J, Brosseau D P, et al. Global peatland dynamics since the Last Glacial Maximum[J]. Geophysical Research Letters, 2010, 3737(13):69-73.
    [4]Wiedermann M M, Kane E S, Potvin L R, et al. Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands[J]. Soil Biology&Biochemistry, 2017, 10808:1-8.
    [5]吴俐莎,唐杰,罗强,等.若尔盖湿地土壤酶活性和理化性质与微生物关系的研究[J].土壤通报, 2012, 4343(1):52-59.
    [6]高俊琴,欧阳华,白军红.若尔盖高寒湿地土壤活性有机碳垂直分布特征[J].水土保持学报, 2006, 2020(1):76-79.
    [7]万忠梅,宋长春.小叶章湿地土壤酶活性分布特征及其与活性有机碳表征指标的关系[J].湿地科学, 2008, 66(2):249-257.
    [8]Zhang C B, Wang J, Liu W L, et al. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland[J]. Bioresource Technology, 2010, 101101(6):1686-1692.
    [9]Xu Z, Yu G, Zhang X, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China(NSTEC)[J]. Soil Biology&Biochemistry, 2017, 104:152-163.
    [10]黄利东,汪丽军,王月.植被类型对滨海湿地土壤酶活性的影响研究[J].土壤通报, 2015, 4646(6):1447-1452.
    [11]Singh D K, Kumar S. Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil(ridges with forest)and in cotton soil after acetamiprid treatments[J]. Chemosphere, 2008, 7171(3):412-418.
    [12]杨文彬,耿玉清,王冬梅.漓江水陆交错带不同植被类型的土壤酶活性[J].生态学报, 2015, 3535(14):4604-4612.
    [13]杨英,耿玉清,黄桂林,等.青海小泊湖区沼泽化草甸、草甸和沙地的土壤酶活性[J].湿地科学, 2016, 1414(1):20-26.
    [14]贺灵,向武,孙兴庭,等.泥炭沼泽土壤酶活性对水热条件变化的响应及其与CO2释放通量的关系——以小兴安岭地区为例[J].生态环境学报, 2009, 1818(6):2326-2333.
    [15]王升忠,王树生.泥炭沼泽微地貌特征及其形成的水动力机制[J].东北师大学报:自然科学版, 1997,(2):83-89.
    [16]Kettridge N, Baird A J. Simulating the thermal behavior of northern peatlands with a 3-D microtopography[J]. Journal of Geophysical Research Biogeosciences, 2015, 11515(G3):214-219.
    [17]Lipson D A, Zona D, Raab T K, et al. Water table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem[J]. Biogeosciences Discussions, 2011, 88(4):577-591.
    [18]Koelbener A, Str?m L, Edwards P J, et al. Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil[J]. Plant&Soil, 2010, 326326(1-2):147-158.
    [19]Borin M, Salvato M. Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms.[J]. Ecological Engineering, 2012, 4646(1):34-42.
    [20]Lawrence B A, Fahey T J, Zedler J B. Root dynamics of Carex stricta-dominated tussock meadows[J]. Plant&Soil, 2013, 364(1-2):325-339.
    [21]王杰,王升忠.长白山区泥炭沼泽植物多样性研究[J].湿地科学, 2005, 33(2):121-126.
    [22]谭凤飞.金川湿地泥炭属性对其水动力参数的影响研究[D].长春:东北师范大学, 2012.
    [23]Saiyacork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil.[J]. Soil Biology&Biochemistry,2002, 3434(9):1309-1315.
    [24]崔保山,杨志峰.湿地生态系统健康研究进展[J].生态学杂志,2001, 2020(3):31-36.
    [25]关松荫.土壤酶及其研究法[M].北京:农业出版社, 1986.
    [26]Parvin S, Blagodatskaya E, Becker J N, et al. Depth rather than microrelief controls microbial biomass and kinetics of C-, N-, Pand S-cycle enzymes in peatland[J]. Geoderma, 2018, 324324:67-76.
    [27]Xu Z, Yu G, Zhang X, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China(NSTEC)[J]. Soil Biology&Biochemistry, 2017, 104(1):152-163.
    [28]Lawrence B A, Zedler J B. Formation of tussocks by sedges:effects of hydroperiod and nutrients[J]. Ecological Applications,2011, 2121(5):1745-1759.
    [29]万忠梅,宋长春,郭跃东,等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J].生态学报, 2008, 2828(12):5980-5986.
    [30]刘双双,王铭,董彦民,等.草丘微地貌对苔草泥炭沼泽枯落物分解的影响[J].生态学杂志, 2018, 3737(1):95-102
    [31]Wang M, Wang G, Wang S, et al. Structure and richness of Carex meyeriana, tussocks in peatlands of Northeastern China[J].Wetlands, 2018, 3838(1):15-23.
    [32]万忠梅,吴景贵.土壤酶活性影响因子研究进展[J].西北农林科技大学学报:自然科学版, 2005, 3333(6):87-92.
    [33]Hackl E, Pfeffer M, Donat C, et al. Composition of the microbial communities in the mineral soil under different types of natural forest[J]. Soil Biology&Biochemistry, 2005, 3737(4):661-671.
    [34]Wright A L, Reddy K R. Phosphorus loading effects on extracellular enzyme activity in everglades wetland soils[J]. Soil Science Society of America Journal, 2001, 6565(2):588-595.
    [35]Petr B, Josef T, Jan F, et al. Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining[J]. Soil Biology&Biochemistry,2008, 400(9):2107-2115.
    [36]?tursováM, Baldrian P. Effects of soil properties and management on the activity of soil organic matter transformation enzymes and the quantification of soil-bound and free activity[J].Plant and Soil, 2011, 338338(1):99-110.
    [37]杨玉盛,何宗明,邹双全,等.格氏栲天然林与人工林根际土壤微生物及其生化特性的研究[J].生态学报, 1998, 1818(2):198-202.
    [38]王启兰,王溪,王长庭,等.高寒矮嵩草草甸土壤酶活性与土壤性质关系的研究[J].中国草地学报, 2010, 3232(3):51-56.
    [39]Wang A S, Angle J S, Chaney R L, et al. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction[J]. Soil Biology&Biochemistry, 2006, 3838(6):1451-1461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700