用户名: 密码: 验证码:
泡沫铝夹芯板抗冲击性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ANALYSIS ON IMPACT RESISTANCE OF ALUMINUM FOAM SANDWICH PANELS
  • 作者:夏志成 ; 张建亮 ; 周竞洋 ; 王曦浩
  • 英文作者:XIA Zhi-cheng;ZHANG Jian-liang;ZHOU Jing-yang;WANG Xi-hao;College of Defense Engineering, PLA University of Science and Technology;
  • 关键词:泡沫铝夹芯板 ; 落锤试验 ; 局部变形与整体变形 ; 势能驻值原理 ; 能量守恒原理 ; 吸能性能
  • 英文关键词:aluminum foam sandwich panel;;hammer dropping experiment;;local and global deformation;;principle of potential energy;;principle of conservation of energy;;energy absorption
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:陆军工程大学国防工程学院;
  • 出版日期:2017-10-25
  • 出版单位:工程力学
  • 年:2017
  • 期:v.34
  • 基金:国家自然科学基金项目(51478469)
  • 语种:中文;
  • 页:GCLX201710024
  • 页数:10
  • CN:10
  • ISSN:11-2595/O3
  • 分类号:214-223
摘要
试验设计了3块钢板夹泡沫铝夹芯板,厚度分别为50 mm、70 mm和100 mm。对每种厚度夹芯板进行七组不同落锤高度的冲击试验,测得了上、下面板变形值,记录了夹芯板的破坏情况。应用数值模拟软件ANSYS/LS-DYNA进一步还原夹芯板冲击过程,导出了面板与芯材的吸能占比。基于假设的夹芯板理论模型,给出了平均冲击荷载、局部变形和整体变形最大值的估算公式。结果表明:当夹芯板尺寸和材料强度一定时,局部变形值与落锤高度的平方根成正比,整体变形最大值、平均冲击力均与落锤高度的平方根成线性关系。夹芯板的抗冲击性能主要依靠增大泡沫铝芯层的变形进行耗能,芯层越厚,泡沫铝吸能占比越大,局部变形越小,夹芯板受到的冲击力越大。
        An experiment including three aluminum foam sandwich panels with the thickness of 100 mm, 70 mm and 50 mm was designed. For each panel, drop hammer impacts of seven different heights of were carried out to acquire the deformation of the upper and lower panel, and to record the collapse process of the sandwich panel. The impact process was simulated by ANSYS/LS-DYNA, and the energy absorption ratio of the face-sheets and the core to the whole sandwich panel was derived. Based on the hypothesis of a theoretical model, the estimating formulae of the average impact load, local deformation and maximum total displacement were given. The results show that the local deformation is proportional to the square root of dropping height, while both the maximum global deformation and the average impact load have a linear relationship with the square root of the dropping height for the sandwich panel with fixed sizes and materials. The anti-impact property of the sandwich panel is mainly dependent on the increase of the deformation of the aluminum foam. The thicker the core layer is, the larger the proportion of foam aluminum absorption energy is, the smaller the local deformation is, and the greater the impact force of the sandwich panel is.
引文
[1]Davies G J,Shu Z.Metallic foams:their production,properties,and Applications[J].Journal of Materials science,1983,18(7):1899―1911.
    [2]Gibson L J,Ashby M F.Cellular solids structure and properties[M].2nd ed.Cambridge,UK:Cambridge University Press,1997:6―20.
    [3]Nieh T G,Higashi K,Wadsworth J.Effect of cell morphology on the compressive properties of open-cell aluminum foams[J].Materials Science and Engineering(A),2000,283(1/2):105―110.
    [4]Andrews E,Sanders W,Gibson L J.Compressive and tensile behavior of aluminum foams[J].Materials Science and Engineering(A),1999,270(2):113―124.
    [5]Chen D J,Chiang F P,Tan Y S,et al.Digital speckle-displacement measurement using a complex spectrum method[J].Applied Optics,1993,32(11):1839―1849.
    [6]Gioux G,Mc Cormick T M,Gibson L J.Failure of aluminum foams under multi-axial loads[J].International Journal of Mechanical Sciences,2000,42(6):1097―1117.
    [7]Deshpande V S,Fleck N A.High strain rate compressive behavior of aluminum alloy foams[J].International Journal of Impact Engineering,2000,24(3):227―298.
    [8]Dannemann K A,Lankford J.High strain rate compression of closed-cell aluminum foams[J].Materials Science and Engineering(A),2000,293(1/2):157―164.
    [9]Li Q M,Meng H.Attenuation or enhancement-a one dimensional analysis on shock transmission in the solid phase of a cellular material[J].International Journal of Impact engineering,2002,27(10):1049―1065.
    [10]Duarte I,Banhart J.A study of an aluminum foam formation kinetics and microstructure[J].Acta Materialia,2000,48(9):2349―2362.
    [11]Wang Ning-zhen,Chen Xiang,Li Ao,et al.Three-point bending performance of a new aluminum foam composite structure[J].Transactions of Nonferrous Metals Society of China,2016,26(2):359―368.
    [12]华云龙,余同希.多胞材料的力学行为[J].力学进展,1991,21(4):457―469.Hua Yunlong,Yu Tongxi.Mechanical behaviour of cellular solids[J].Advances in Mechanics,1991,21(4):457―469.(in Chinese)
    [13]张学斌,凤仪,郑海务,等.泡沫铝的动态力学性能研究[J].合肥工业大学学报(自然科学版),2002,25(2):290―294.Zhang Xuebin,Feng Yi,Zheng Haiwu,et al.Investigation of the dynamic compressive properties of the aluminum alloy foam[J].Journal of Hefei University of Technology(Natural Science),2002,25(2):290―294.(in Chinese)
    [14]凤仪,朱震刚,潘艺,等.泡沫铝的动态力学性能研究[J].稀有金属材料与工程,2005,34(4):544―548.Feng Yi,Zhu Zhen’gang,Pan Yi,et al.Dynamic mechanical properties of aluminum alloy foams[J].Rare Metal Materials and Engineering,2005,34(4):544―548.(in Chinese)
    [15]张立勇,薛国宪,程和法,等.通孔泡沫铝合金的动态压缩力学性能研究[J].有色金属,2004,56(4):21―24.Zhang Liyong,Xue Guoxian,Cheng Hefa,et al.Dynamic compressive mechanical behavior of porous aluminum alloy[J].Nonferrous Metals,2004,56(4):21―24.(in Chinese)
    [16]王曦,虞吉林.泡沫铝的单向力学行为[J].试验力学,2001,16(4):438―443.Wang Xi,Yu Jilin.Uniaxial mechanical behavior of aluminum foam[J].Journal of Experimental Mechanics,2001,16(4):438―443.(in Chinese)
    [17]田杰,胡时胜.基体性能对泡沫铝力学行为的影响[J].工程力学,2006,23(8):168―171.Tian Jie,Hu Shisheng.Effect of matrix properties on the mechanical behaviors of aluminum foams[J].Engineering Mechanics,2006,23(8):168―171.(in Chinese)
    [18]谭柱华,陈晨,韩旭,等.泡沫铝硅合金动态压缩力学性能及吸能性能特性研究[J].工程力学,2013,30(2):360―364.Tan Zhuhua,Chen Chen,Han Xu,et al.Investigation on the dynamic compressive behavior and energy absorption properties of aluminum-section foam[J].Engineering Mechanics,2013,30(2):360―364.(in Chinese)
    [19]张健,赵桂平,卢天健.梯度泡沫金属的冲击吸能特性[J].工程力学,2016,33(8):211―220.Zhang Jian,Zhao Guiping,Lu Tianjian.Energy absorption behavior of density-graded metallic foam under impact loading[J].Engineering Mechanics,2016,33(8):211―220.(in Chinese)
    [20]Gupta N K,Mohamed N M,Velmurugan R.Experimental and numerical investigations into collapse behavior of thin spherical shells under drop hammer impact[J].International Journal of Solid and Structures,2007,44(10):3136―3155.
    [21]Rajendran R,Sai K P,Chandrasekar B,et al.Preliminary investigation of aluminum foam as an energy absorber for nuclear transportation cask[J].Journal of Materials and Design,2008,29(9):1732―1739.
    [22]张方举,谢若泽,田常津,等.泡沫铝在落锤冲击荷载作用下的试验研究[C].武夷山:第四届全国爆炸力学试验技术学术会议论文集,2006:167―171.Zhang Fangju,Xie Ruoze,Tian Changjin,et al.Experimental study of aluminum foam in drop hammer impact loads[C].Wu Yishan:The Fourth National Symposium on Explosive Mechanics,2006:167―171.(in Chinese)
    [23]周竞洋,夏志成,张建亮,等.钢板夹泡沫铝组合板抗弯性能研究[J],工程力学,2017,34(4):213―220.Zhou Jingyang,Xia Zhicheng,Zhang Jianliang,et al.Study on bending resistance of aluminum foam sandwich panel[J].Engineering Mechanics,2017,34(4):213―220.(in Chinese)
    [24]Zhou D W,Strong W J.Low velocity impact denting of HSSA lightweight sandwich panel[J].International Journal of Mechanical Sciences,2006,48(10):1031―1045.
    [25]刘士光,张涛.弹塑性力学基础理论[M].武汉:华中科技大学出版社,2008:241―242.Liu Shiguang,Zhang Tao.Elastic and plastic mechanics basis theory[M].Wuhan:The Huazhong University of Science and Technology Press,2008:241―242.(in Chinese)
    [26]龙驭球.能量原理新论[M].北京:中国建筑工业出版社,2007:106―110.Long Yuqiu.New principle of energy[M].Beijing:China Architecture&Building Press,2007:106―110.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700