用户名: 密码: 验证码:
固溶温度对Ag2205双相不锈钢组织与性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of solution temperature on microstructure and properties of Ag-bearing 2205 duplex stainless steel
  • 作者:向红亮 ; 陈盛涛 ; 邓丽萍
  • 英文作者:XIANG Hongliang;CHEN Shengtao;DENG Liping;School of Mechanical Engineering and Automation, Fuzhou University;Jinjiang Science and Education Park of Fuzhou University;
  • 关键词:Ag2205双相不锈钢 ; 力学性能 ; 耐蚀性能 ; 抗菌性能
  • 英文关键词:Ag-bearing 2205 duplex stainless steel;;mechanical property;;corrosion resistance;;antibacterial property
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:福州大学机械工程及自动化学院;福州大学晋江科教园;
  • 出版日期:2019-05-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2019
  • 期:v.50;No.297
  • 基金:福建省科技重大专项项目(2017HZ0001-2);; 福建省产业技术联合创新专项项目(FG-2016001);; 先进金属材料及成形技术创新团队及保障体系项目(2050205)~~
  • 语种:中文;
  • 页:ZNGD201905007
  • 页数:9
  • CN:05
  • ISSN:43-1426/N
  • 分类号:50-58
摘要
通过添加Cu–Ag合金颗粒制备Ag2205双相不锈钢,并分别在1 050,1 075,1 100,1 125和1 150℃对其进行固溶处理;利用光学显微镜、扫描电子显微镜、拉伸试验、电化学工作站及覆膜法等研究固溶温度对Ag2205双相不锈钢组织、力学性能、耐蚀性能及抗菌性能的影响,并与母材2205及Cu2205不锈钢的实验结果进行对比分析。研究结果表明:随着固溶温度的升高,Ag2205材料内γ相体积分数逐渐降低且γ相先变粗后细化,而α相体积分数逐渐提高;此外,微米级的含Ag相主要分布于α基体及α/γ相界处,升高固溶温度会促进Ag相溶解;随着固溶温度的升高,含Ag材料洛氏硬度和抗拉强度均先降低后升高,但伸长率持续增大,当固溶温度为1150℃时,Ag2205综合力学性能最佳且优于母材与含Cu2205材料的力学性能;Ag的加入会降低2205材料的耐蚀性,但提高固溶温度可改善其耐蚀性能,且在1125℃固溶后,其耐蚀性已优于母材耐蚀性;3种材料中,Cu2205材料的耐蚀性最好;当固溶温度大于等于1 075℃时含Ag材料具有优异的抗菌性能,Cu2205材料及母材则不具备抗菌效果。
        Ag-bearing 2205 duplex stainless steel was prepared by adding Cu–Ag alloy particles, followed by solution treatment at 1 050, 1 075, 1 100, 1 125 and 1 150 oC, respectively. The effects of solution temperature on microstructure,mechanical properties, corrosion resistance and antibacterial property of Ag-bearing 2205 duplex stainless steels were studied by means of optical microscope(OM), scanning electron microscope(SEM), tensile test, electrochemical workstation and film mulching method. Meanwhile, parent material 2205 as well as Cu-bearing 2205 was prepared as references. The results show that with the increase of solution temperature, the volume fraction of γ decrease, and γcoarsens first and then shrinks while the volume fraction of α increases. In addition, the Ag phase in micro scale is distributed in α phase and at the α/γ boundaries, and the increase of solution temperature promotes the dissolution of Ag phase. The Rockwell hardness as well as tensile strength of Ag-bearing material decreases first and then increases with the rise of solution temperature, while the elongation rate goes up as the temperature increases. The comprehensive mechanical properties of Ag2205 are the best and superior to that of parent material 2205 as well as Cu-bearing 2205 after solution treatment at 1 150 oC. Addition of Ag reduces the corrosion resistance of 2205 material, whereas the increase of solution temperature improves the corrosion resistance. The corrosion resistance of Ag2205 is better than that of parent material after solution treatment at 1 125 oC. The corrosion resistance of Cu-bearing 2205 is the best among 3 kinds of materials. Ag-bearing materials after solution treatment at 1 075 oC or above possess excellent antibacterial properties, whereas both Cu-bearing 2205 and parent material do not show antibacterial effect.
引文
[1]LI Baoe.Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings[J].Materials Chemistry and Physics,2009,118(1):99-104.
    [2]HONG I T,KOO C H.Antibacterial properties,corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J].Materials Science and Engineering:A,2005,393(1/2):213-222.
    [3]PEREZTANOIRA R,PEREZJORGE C,ENDRINOJ L,et al.Antibacterial properties of biomedical surfaces containing micrometric silver islands[J].Journal of Physics:Conference Series,2010,252(1):012015-1-8.
    [4]向红亮,郭培培,刘东.含Ag抗菌双相不锈钢组织及抗菌性能研究[J].金属学报,2014,50(10):1210-1216.XIANG Hongliang,GUO Peipei,LIU Dong.Microstructure and antibacterial properties of Ag-bearing duplex stainless steel[J].ActaMetallurgicaSinica,2014,50(10):1210-1216.
    [5]LI Mingjun,NAN Li,XU Dake,et al.Antibacterial performance of a Cu-bearing stainless steel against Microorganisms in tap water[J].Journal of Materials Science and Technology,2015,31(3):243-251.
    [6]OGUZIE E E,LI Jibiao,LIU Yongqian,et al.Electrochemical corrosion behavior of novel Cu-containing antimicrobial austenitic and ferritic stainless steels in chloride media[J].Journal of Materials Science,2010,45(21):5902-5909.
    [7]DAN Zhigang,NI Hongwei,XIONG Juan,et al.Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions[J].Thin Solid Films,2005,492(1):93-100.
    [8]XI Tong,YANG Chunguang,SHAHZAD M B,et al.Study of the processing map and hot deformation behavior of a Cu-bearing317LN austenitic stainless steel[J].Materials&Design,2015,87(15):303-312.
    [9]杨柯,董加胜,陈四红,等.含Cu抗菌不锈钢的工艺与耐蚀性能[J].材料研究学报,2006,20(5):523-527.YANG Ke,DONG Jiasheng,CHEN Sihong,et al.The craftwork performance and resistance to corrosion of the Cu-containing antibacterial stainless steels[J].Chinese Journal of Materials Research,2006,20(5):523-527.
    [10]南黎,刘永前,杨伟超,等.含铜抗菌不锈钢的抗菌特性研究[J].金属学报,2007,43(10):1065-1070.NAN Li,LIU Yongqian,YANG Weichao,et al.Study on antibacterial properties of copper-containing antibacterial stainless steels[J].Acta Metallurgica Sinica,2007,43(10):1065-1070.
    [11]向红亮,范金春,刘东,等.抗菌时效处理对含Cu双相不锈钢组织和性能的影响I:富Cu相的微观结构及演变规律[J].金属学报,2012,48(9):1081-1088.XIANG Honglaing,FAN Jinchun,LIU Dong,et al.Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel I:Microstructure and evolution of copper-rich phase[J].Acta Metallurgica Sinica,2012,48(9):1081-1088.
    [12]向红亮,范金春,刘东,等.抗菌时效处理对含Cu双相不锈钢组织和性能的影响II:耐蚀及抗菌性能[J].金属学报,2012,48(9):1089-1096.XIANG Hongliang,FAN Jinchun,LIU Dong,et al.Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel II:Corrosion resistance and properties[J].Acta Metallurgica Sinica,2012,48(9):1089-1096.
    [13]刘克田.稀土铈对1Cr17不锈钢组织、耐蚀性及抗菌性的影响[D].包头:内蒙古科技大学材料与冶金学院,2010:13-25.LIU Ketian.Effect of rare earth Ce on microstructure,corrosion resistance and antibacterial property of 1Crl7 stainless steel[D].Baotou:Inner Mongolia University of Science and Technology.College of Materials and Metallurgy,2010:13-25.
    [14]敬和民,吴欣强,刘永前,等.含铈不锈钢的抗菌性能[J].中国稀土学报,2006,24(2):223-226.JING Hemin,WU Xinqiang,LIU Yongqian,et al.Antibacterial properties of cerium-bearing stainless steel[J].Journal of the Chinese Rare Earth Society,2006,24(2):223-226.
    [15]李代钟,高淑勤,张烈夫,等.铈在钢中固溶度的研究[J].中国稀土学报,1987,5(1):57-64.LI Daizhong,GAO Shuqin,ZHANG Liefu,et al.Research on solid solubility of cerium in steel[J].Journal of the Chinese Rare Earth Society,1987,5(1):57-64.
    [16]YOKOTA T,TOCHIHARA M,OHTA M.Silver dispersed stainless steel with antibacterial property[J].Kawasaki Steel Technical Report,2002,33(46):37-41.
    [17]王志广,张伟,李宁,等.金属离子型抗菌不锈钢组织及其抗菌性能的研究[J].铸造技术,2006,27(5):499-502.WANG Zhiguang,ZHANG Wei,LI Ning,et al.Study of microstructure and antibacterial properties in ionic antibacterial stainless steel[J].Foundry Technology,2006,27(5):499-502.
    [18]SREEKUMARI K R,NANDAKUMAR K,KURISSERY R,et al.Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion[J].ISIJInternational,2003,43(11):1799-1806.
    [19]CHIANG W C,TSENG I S,MOLLER P,et al.Influence of silver additions to type 316 stainless steels on bacterial inhibition,mechanical properties,and corrosion resistance[J].Materials Chemistry and Physics,2010,119(1/2):123-130.
    [20]HUANG C F,CHIANG H J,LAN W C,et al.Development of silver-containing austenite antibacterial stainless steels for biomedical applications part I:Microstructure characteristics,mechanical properties and antibacterial mechanisms[J].Biofouling,2011,27(5):449-57.
    [21]轩阳.含银304奥氏体不锈钢中富银相析出行为研究[D].北京:清华大学材料学院,2014:15-18.XUAN Yang.Study of the silver precipitation behavior in silver-contain 304 austenitic stainless steel[D].Beijing:Tsinghua University.College of Materials,2014:15-18.
    [22]郭培培,向红亮,李敬鑫,等.Cu-Ag合金雾化工艺研究[J].特种铸造及有色金属,2013,33(5):470-473.GUO Peipei,XAING Hongliang,LI Jingxin,et al.Atomization of Cu-Ag alloy[J].Special Casting&Nonferrous Alloys,2013,33(5):470-473.
    [23]SWARTZENDRUBER L J.The Ag-Fe(silver-iron)system[J].Bulletin of Alloy Phase Diagrams,1984,5(6):560-564.
    [24]李代锺.钢中硫化物夹杂和钢的性能之间的关系[J].材料科学与工程,1990(3):25-28.LI Daizhong.Relationship between sulphide inclusions and properties of steel[J].Journal of Materials Science and Engineering,1990(3):25-28.
    [25]曹楚南.腐蚀电化学原理[M].3版.北京:化学工业出版社,2008:217-219.CAO Chunan.The principle of corrosion electrochemistry[M].3rd ed.Beijing:Chemical Industry Press,2008:217-219.
    [26]付燕,林昌健,蔡文达.微电化学技术研究双相不锈钢优选腐蚀行为[J].金属学报,2005,41(3):302-306.FU Yan,LIN Changjian,CAI Wenda.A study of the selective dissolution behavior of duplex stainless steel by micro-electrochemical technique[J].Acta Metallurgica Sinica,2005,41(3):302-306.
    [27]DONG Yangchun,LI Xiaoying,TIAN Linhai,et al.Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding[J].Acta Biomaterialia,2011,7(1):447-457.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700