用户名: 密码: 验证码:
大跨度金属屋面风荷载特性和抗风承载力研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on wind loads and wind resistance bearing capacity of large span metal roof structures
  • 作者:宣颖 ; 谢壮宁
  • 英文作者:XUAN Ying;XIE Zhuangning;State Key Laboratory of Subtropical Building Science, South China University of Technology;
  • 关键词:大跨度金属屋面 ; 风荷载 ; 风洞试验 ; 抗风承载力 ; 风致疲劳 ; 气动措施
  • 英文关键词:large span metal roofing;;wind load;;wind tunnel test;;wind resistance bearing capacity;;wind-induced fatigue;;aerodynamic measure
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:华南理工大学亚热带建筑科学国家重点实验室;
  • 出版日期:2018-12-17 17:02
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51778243)
  • 语种:中文;
  • 页:JZJB201903004
  • 页数:9
  • CN:03
  • ISSN:11-1931/TU
  • 分类号:45-53
摘要
近年频发大跨度金属屋面风灾事故,使得此类结构的风灾问题备受关注。造成风灾的原因有很多,主要包括屋面风荷载被低估,未考虑脉动风所引起的屋面疲劳效应,风敏感性气动外形引起的高负压和必要控制措施的缺失,屋面抗风设计及施工缺陷等。从屋盖风荷载分布、金属屋面抗风承载力、风致疲劳性能和抗风设计方法4个方面总结和评述了国内外的研究进展。根据已有研究存在的问题、风灾调查以及2017年超强台风"天鸽"作用下金属屋面工程实例,建议进一步开展对大跨度屋面风压分布特征、金属屋面抗风承载力与风致疲劳性能的理论和数值分析方法以及提高屋面抗风性能的构造措施和空气动力学措施等方面的系统研究。
        The recent frequent occurrences of wind-related disaster of large scale metal roof buildings have raised significant concern among the community of structural engineers.There are many reasons behind the wind-related disasters, including an underestimation of wind loads on metal roofs, lack of consideration of wind fluctuation induced fatigue effects, lack of understanding of high negative pressure due to sensitive aerodynamics shapes and absence of necessary control measures, and deficiency in the wind resistance design and construction. In this paper, the research progresses on pressure distribution, wind resistance capacity, wind-induced fatigue performance, and wind resistance design method of metal roof buildings were summarized. According to the problems identified from previous studies and wind-related disaster investigations, and based on a further case study from the super typhoon Hato in 2017, the necessity of future studies on wind pressure distribution characteristics, theoretical and numerical analysis methods for wind resistance,wind-induced fatigue performance, and structural/aerodynamics measures to improve the wind resistance of metal roof, are highlighted.
引文
[1] 张耕. 大型公共建筑直立锁边金属屋面抗风揭加固方法探析[J]. 工程建设与设计, 2017(21):28-32. (ZHANG Geng. Analysis of the wind uplift strengthening methods of the standing seam metal roof in large-scale public buildings[J]. Construction & Design for Engineering, 2017(21):28-32 (in Chinese))
    [2] 梁静波,汪新. 某体育馆屋面风灾事故调查分析[J]. 广东土木与建筑, 2009(12):11-14.(LIANG Jingbo, WANG Xin. Investigation and analysis on wind-induced damage of the roof system of a gym caused by a tornado[J]. Guangdong Architecture Civil Engineering, 2009(12):11-14.(in Chinese))
    [3] 应晓捷, 钟俊浩. 海口琼台师专体育馆金属屋面破坏原因分析及加固措施[C]// 第二届全国金属围护系统行业大会暨2015年金属围护系统学术年会. 北京:中国钢结构协会,2015.
    [4] 台风“莫兰蒂”登陆厦门机场受损严重[Z/OL].(2016- 09-15)[2018-11- 06]. http://news.163.com/photoview/00AP0001/2198105.html#p=C10M7VV J00AP0001.
    [5] DAVENPORT A G, SURRY D, STATHOPOULOS T. Wind loads on low-rise buildings: final report on phases Ⅰ and Ⅱ: BLWT-SS7[R]. London, Ontario: The University of Western Ontario, 1978.
    [6] DAVENPORT A G, SURRY D, STATHOPOULOS T. Wind loads on low-rise buildings: final report on phase Ⅲ: BLWT-SS8[R]. London, Ontario: The University of Western Ontario, 1978.
    [7] DAVENPORT A G. On the assessment of the reliability of wind loading on low buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,1983,11(1): 21-37.
    [8] SURRY D, STATHOPOULOS T. An experimental approach to the economical measurements of spatially averaged wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics,1978,2(4):385-397.
    [9] Canadian Commission on Buildings and Fire Codes. Structural commentaries: part 4: user’s guide: NBC 2010[S]. Ottawa: National Research Council of Canada, 2010.
    [10] American Society of Civil Engineers. Minimum design loads for buildings and other structures: ASCE 7-10[S]. Reston, VA: American Society of Civil Engineers, 2010.
    [11] MEHTA K C, LEVITAN M L, IVERSON R E, MCDONALD J R. Roof corner pressures measured in the field on a low building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1/2/3): 181-192.
    [12] LIN J X, SURRY D, TIELEMAN H W.The distribution of pressure near roof corners of flat roof low buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,56(2):235-265.
    [13] LIN J X, SURRY D. The variation of peak loads with tributary area near corners on flat low building roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,77/78:185-196.
    [14] STATHOPOULOS T, MOHAMMADIAN A R. Wind loads on low buildings with mono-sloped roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 23(1/2/3): 81-97.
    [15] STATHOPOULOS T. Wind loads on low-rise buildings: a review of the state of the art[J]. Engineering Structures, 1984,6(2):119-135.
    [16] HOLMES J D. Wind pressures on tropical housing[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 53(1/2):105-123.
    [17] KRISHNA P. Wind loads on low rise buildings:a review[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55:383-396.
    [18] KASPERSKI M. Design wind loads for low-rise buildings: a critical review of wind load specifications for industrial buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996,61(2/3):169-179.
    [19] XU Y L, REARDON G F. Variation of wind pressures on hip roof with roof pitch[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998,73(3/4): 267-284.
    [20] HO T C E, SURRY D, MORRISH D, KOPP G A. The UWO contribution to the nist aerodynamic data base for wind on low buildings: part 1: archiving format and basic aerodynamic data[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93(1):1-30.
    [21] PIERRE ST L M, KOPP G A, SURRY D, HO T C E. The UWO contribution to the nist aerodynamic data base for wind on low buildings: part 2: comparison of data with wind load provisions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005,93(1):31-59.
    [22] ALRAWASHDEH H, STATHOPOULOS T. Wind pressures on large roofs of low buildings and wind codes and standards[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015,147:212-225
    [23] XU Y L, REARDON G F. Test of screw fastened profiled roofing sheets subject to simulated wind uplift[J]. Journal of Structural Engineering, 1993, 15(6): 423- 430.
    [24] XU Y L, TENG J G. Local plastic failure of light gauge steel roofing sheets finite element analysis versus experiment[J]. Journal of Construct Steel Research, 1994, 30(2): 125-150.
    [25] MADENDRAN M. Behaviour and design of crest-fixed profiled steel roof claddings under wind uplift[J]. Engineering Structures, 1994, 16(5): 368-376.
    [26] MAHENDRAN M. A simple test method for profiled steel cladding systems under wind uplift[J]. Experimental Techniques, 1995,19(4): 17-20.
    [27] MAHENDRAN M. Review of current test method for screwed connections[J]. Journal of Structural Engineering, 1997, 123(3): 321-325.
    [28] MAHENDRAN M, TANG R B. Pull-out strength of steel roof and wall cladding systems[J].Journal of Structural Engineering. Journal of Structural Engineering, 1998, 124(10): 1192-1201.
    [29] MAHAARACHCHI D, MAHENDRAN M. A strain criterion for pull-through failures in crest-fixed steel claddings[J]. Engineering Structures, 2009, 31(2): 498-506.
    [30] MAHENDRAN M, MAHAARACHCHI D. Splitting failures in trapezoidal steel roof cladding[J]. Journal of Performance of Constructed Facilities,2004,18(1):4-11.
    [31] MURRAY J Morrison, GREGORY A Kopp. Analysis of wind-induced clip loads on standing seam metal roofs[J]. Journal of Structural Engineering, 2010, 136(3): 334-337
    [32] 景晓昆,李元齐.直立锁缝屋面体系固定支座的有效静力风荷载[J]. 同济大学学报(自然科学版),2013,41(11):1630-1635.(JING Xiaokun, LI Yuanqi. Effective static wind load for clips of standing seam roof system[J]. Journal of Tongji University (Natural Science), 2013,41(11):1630-1635. (in Chinese))
    [33] 孙成疆.直立锁缝金属屋面系统在模拟极端暴风工况下抗风揭能力测试和分析[J]. 建筑结构,2011,41(增刊1):1438-1442.(SUN Chengjiang. Simulated wind uplift pressure analysis and tests of the standing seam metal roof system[J]. Building Structure, 2011,41(Suppl.1): 1438-1442.(in Chinese))
    [34] HOSAM M Ali, PAUL E Senseny. Models for standing seam roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003,91(12):1689-1702.
    [35] DIXON C R, PREVATT D O, DATIN P L, et al. Influence of edge restraint on clip fastener loads of standing seam metal roof panels[J]. Journal of Astm International, 2011, 8(8):1-16
    [36] 汪明波,宣颖,谢壮宁.自攻螺钉金属屋面板抗风揭研究[C]// 第十八届全国结构风工程学术会议暨第四届全国风工程研究生论坛论文集. 长沙:中南大学,2017: 433- 434.(WANG Mingbo, XUAN Ying, XIE Zhuangning. Research on wind resistance of self-screws metal roof panels[C]// Proceedings of the 18th National Conference on Structural Wind Engineering and the 4th National Wind Engineering Graduate Forum. Changsha: Central South University, 2017:433- 434.(in Chinese))
    [37] JANCAUSKAS E D, MAHENDRAN M, WALKER G R. Computer simulation of the fatigue behaviour of roof cladding during the passage of a tropical cyclone[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 51(2): 215-227.
    [38] MAHENDRAN M. Wind-resistant low-rise buildings in the tropics[J]. Journal of Performance of Constructed Facilities, 1995, 9(4): 330-346.
    [39] MAHENDRAN M. Towards an appropriate fatigue loading sequence for roof claddings in cyclone prone areas[J]. Engineering Structures,1995,17(7):476- 484.
    [40] XU Y L. Fatigue performance of screw-fastened light-gauge-steel roofing sheets[J]. Journal of Structural Engineering, 1995, 121(3): 389-398.
    [41] XU Y L. Wind-induced fatigue loading and damage to hip and gable roof claddings[J]. Journal of Structural Engineering, 1996, 122(12): 1475-1483.
    [42] XU Y L. Model-and full-scale comparison of fatigue-related characteristics of wind pressures on the Texas Tech Building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 58(3): 147-173.
    [43] XU Y L. Determination of wind-induced fatigue loading on roof cladding[J]. Journal of Engineering Mechanics, 1995, 121(3): 956-963.
    [44] HENDERSON D J, GINGER J D, MORRISON M J, et al. Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing[J]. Wind and Structures, 2009, 14(2): 383- 400.
    [45] HENDERSON D J, GINGER J D, KOPP G A. Wind induced fatigue of metal roof cladding during severe tropical cyclones[C]// Proceedings of the 2010 Structures Congress. Reston, VA: ASCE, 2010: 1205-1216.
    [46] HENDERSON D J, GINGER J D. Response of pierced fixed corrugated steel roofing systems subjected to wind loads[J]. Engineering Structures, 2011, 33(12): 3290-3298.
    [47] GERHARDT H J, KRAMER C. Wind induced loading cycle and fatigue testing of lightweight roofing fixations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 23(1): 237-247.
    [48] DABM. Darwin area building manual[S]. the Northern Territory,Australia:Darwin Reconstruction Commission,1976.
    [49] EBS. Guidelines for the testing and evaluation of products for cyclone prone areas: Tech. Record 440[R]. Sydney, Australia: Experimental Building Station (EBS), 1978.
    [50] MAHENDRAN M, MAHAARACHCHI D. Cyclic pull-out strength of screwed connections in steel roof and wall cladding systems using thin steel battens[J]. Journal of Structural Engineering, 2002, 128(6): 771-778.
    [51] BLACKMORE P A. Load reduction on flat roofs-the effect of edge profile[J]. Journal of Wind Engineering and Industrial Aerodynamics,1988,29(1/2/3):89-98.
    [52] KOPP G A, MANS C, SURRY D. Wind effects of parapets on low buildings: part 4: mitigation of corner loads with alternative geometries[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(11): 873-888.
    [53] ROBERTSON A P. Effect of eaves detail on wind pressures over an industrial building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1991, 38(2/3): 325-333.
    [54] COOK N J. Reduction of wind loads on a grand stand roof[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1982, 10(3): 373-380.
    [55] MELBOURNE W H, CHEUNG J C K. Reducing the wind loading on large cantilevered roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28(1/2/3):401- 410.
    [56] 楼文娟,孙斌,卢旦,沈国辉. 复杂型体悬挑屋盖风荷载风洞试验与数值模拟[J]. 建筑结构学报, 2007, 28(1): 107-112.(LOU Wenjuan, SUN Bin, LU Dan, SHEN Guohui. Wind tunnel test and numerical simulation of wind load on complex cantilevered roof[J]. Journal of Building Structures, 2007, 28(1): 107-112.(in Chinese))
    [57] FU J Y, LI Q S, XIE Z N. Wind effects on a large cantilevered flat roof: loading characteristics and strategy of reduction[J].Wind and Structures, 2005, 8 (5): 357-372.
    [58] SUARIS W, IRWIN P. Effect of roof-edge parapets on mitigating extreme roof suctions[J].Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(10/11):483- 491.
    [59] 刘帅,谢壮宁,石碧青. 罩棚式低矮房屋屋面风荷载特性及气动抗风措施研究[J]. 建筑结构学报,2011,32(4):9-16.(LIU Shuai, XIE Zhuangning, SHI Biqing. Wind tunnel test and numerical simulation of wind loadson complex cantilevered roofs[J]. Journal of Building Structures,2011,32(4):9-16.(in Chinese))
    [60] BLESSING C, CHOWDHURY A G, LIN J, HUANG P. Full-scale validation of vortex suppression techniques for mitigation of roof uplift[J]. Engineering Structures, 2009,31 (12): 2936-2946.
    [61] BITSUAMLAK G, WARSIDO W, LEDESMA E, CHOWDHURY A. Aerodynamic mitigation of roof and wall corner suctions using simple architectural elements[J]. Journal of Engineering Mechanics, 2013,139(3): 396- 408.
    [62] ALY A M, BRESOWAR J. Aerodynamic mitigation of wind-induced uplift forces on low-rise buildings: a comparative study[J].Journal of Building Engineering, 2016, 5(3): 267-276
    [63] 杨易,谢壮宁,石碧青. 屋顶构造形式对传统民居风荷载特性的影响[J].建筑结构学报,2017,38(2):143-150.(YANG Yi, XIE Zhuangning, SHI Biqing. Influence of roof members on wind load characteristics oftraditional low-rise residence buildings[J]. Journal of Building Structures, 2017, 38(2): 143-150.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700