用户名: 密码: 验证码:
燃煤烟气多污染物协同治理试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on synergistic treatment of multi-pollutants from coal-fired flue gas
  • 作者:娄彤 ; 方晓东 ; 陆明智 ; 许仁发
  • 英文作者:LOU Tong;FANG Xiaodong;LU Mingzhi;XU Renfa;State Environmental Protection Engineering and Technology Center for Power Industrial Dust Control,Fujian Longking Co.Ltd.;Anhui Huainan Pingwei Power Generation Co.,Ltd.;
  • 关键词:吸附转化 ; 协同治理 ; 污染物 ; 深度脱除
  • 英文关键词:adsorption and transformation;;synergistic treatment;;pollutant;;deep removal
  • 中文刊名:JJMS
  • 英文刊名:Clean Coal Technology
  • 机构:福建龙净环保股份有限公司国家环境保护电力工业烟尘治理工程技术中心;安徽淮南平圩发电有限责任公司;
  • 出版日期:2018-09-15
  • 出版单位:洁净煤技术
  • 年:2018
  • 期:v.24;No.117
  • 基金:国家重点研发计划资助项目(2016YFC0203703)
  • 语种:中文;
  • 页:JJMS201805020
  • 页数:5
  • CN:05
  • ISSN:11-3676/TD
  • 分类号:136-139+145
摘要
为实现燃煤烟气污染物的深度脱除,在1 000 MW电站燃煤锅炉除尘器入口加装了多功能烟气污染物治理中试装置,并研究了该烟气治理装置对烟气中烟尘、SO_3和Hg等污染物吸附转化特性的影响。结果表明:该装置可以有效解决常规技术无法解决的PM_(2.5)、SO_3和Hg等排放问题。试验工况条件下,烟尘、PM_(10)、PM_(2.5)及PM1的脱除效果非常明显,脱除效率均高于99.3%(<5 mg/m~3,dry normal);当氢氧化钙为吸附剂、Ca/SO_3为1时,SO_3的脱除效果为88.78%(0.77 mg/m~3,dry normal)、Hg的脱除效率为94.272%,其中气态汞的脱除效率为75.883%。
        In order to reach deep removal of flue gas pollutants,a multi-function gas pollution control system was installed at the inlet of dust collector of a 1 000 MW scale power plant coal fired boiler.The influence of multi-function gas pollution control system on adsorption and transformation properties of the pollutional dust,SO_3 and Hg in flue gas were studied.The results show that the device can effectively solve the emission problems which can not be solved by conventional technologies,such as PM_(2.5),SO_3 and Hg.The removal efficiencies of dust,PM_(10),PM_(2.5) and PM_1 are remarkably under the experimental conditions,and their removal efficiencies are higher than 99. 3%( < 5 mg/m~3,dry normal).When calcium hydroxide is chosen as the adsorbent with a Ca/S ratio of 1,the removal efficiency of SO_3 is 88. 78%( 0. 77 mg/m~3,dry normal),and the removal efficiencies of total Hg and gaseous Hg are 94. 272% and 75. 883%,respectively.
引文
[1]杨勇平,杨志平,徐钢,等.中国火力发电能耗状况及展望[J].中国电机工程学报,2013,33(23):1-11.YANG Yongping,YANG Zhiping,XU Gang,et al.Situation and prospect of energy consumption for China's thermal power generation[J].Proceedings of the CSEE,2013,33(23):1-11.
    [2]杨业,徐超群,朱燕群,等.臭氧氧化结合硫代硫酸钠溶液喷淋同时脱硫脱硝[J].化工学报,2016,67(5):2041-2047.YANG Ye,XU Chaoqun,ZHU Yanqun,et al.Simultaneous removal of SO2and NOxby combination of ozone oxidation and Na2S2O3solution spray[J].CIESC Journal,2016,67(5):2041-2047.
    [3]MA Qiang,WANG Zhihua,LIN Fawei.Characteristics of O3oxidation for simultaneous desulfurization and denitration with limestone-gypsum wet scrubbing:Application in a carbon black drying kiln furnace[J].Energy&Fuels,2016,30(3):2302-2308.
    [4]常景彩,董勇,王志强.燃煤烟气中SO3转换吸收特性模拟实验[J].煤炭学报,2010,35(10):1717-1720.CHANG Jingcai,DONG Yong,WANG Zhiqiang,et al.Simulation experiment of SO3conversion and absorption characteristics in coal fired flue gas[J].Journal of China Coal Society,2010,35(10):1717-1720.
    [5]BI Degui,ZHANG Jian,ZHANG Zhongxiao,et al.Industrial trials of high-temperature selective noncatalytic reduction injected in the primary combustion zone in a 50 MWe tangentially firing pulverized-coal boiler for deeper NOxreduction[J].Energy Fuels,2016,30(12):10858-10867.
    [6]AHN S Y,GO S M,LEE K Y,et al.The characteristics of NO production mechanism on flue gas recirculation in oxy-firing condition[J].Applied Thermal Engineering,2011,31(6/7):1163-1171.
    [7]ZHOU Dong,LUO Zhongyang,JIANG Jianping,et al.Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment[J].Powder Technology,2016,289:52-59.
    [8]付振华,张忠孝,毕德贵,等.富燃料区喷氨降低烟煤NOx排放的试验研究[J].锅炉技术,2018,49(2):32-37.FU Zhenhua,ZHANG Zhongxiao,BI Degui,et al.Experimental research for reducing NOxemission of bituminous coal with reagent rejection in fuel-rich zone[J].Boiler Technology,2018,49(2):32-37.
    [9]张忠梅,盛洪产,林孝鑫,等.KMn O4氧化复合Na OH液相吸收同时脱硫脱硝的实验研究[J].环境工程,2017,35(8):102-107.ZHANG Zhongmei,SHENG Hongchan,LIN Xiaoxin,et al.Experimental study on simultaneous desulfurization and denitrification by KMn O4oxidation combining Na OH liquid absorption[J].Environmental Engineering,2017,35(8):102-107.
    [10]吴华成.燃煤火电厂烟气污染物排放对大气PM2.5的影响[J].华北电力技术,2014(5):1-4.WU Huacheng.Influence of flue gas emission of coal-fired power plant on atmospheric PM2.5[J].North China Electric Power,2014(5):1-4.
    [11]王宏亮,薛建明,许月阳,等.燃煤电站锅炉烟气中SO3的生成及控制[J].电力科技与环保,2014,30(5):17-20.WANG Hongliang,XUE Jianming,XU Yueyang,et al.Formation and control of SO3from coal-fired power plants[J].Electric Power Technology and Environmental Protection,2014,30(5):17-20.
    [12]王运军,段钰锋,杨立国,等.600 MW燃煤电站烟气汞形态转化影响因素分析[J].热能动力工程,2008,23(4):399-403.WANG Yunjun,DUAN Yufeng,YANG Liguo,et al.An analysis of the factors exercising an influence on the morphological transformation of mercury in the flue gas of a 600 MW coal-fired power plant[J].Journal of Engineering for Thermal Energy&Power,2008,23(4):399-403.
    [13]张晓鲁.燃煤电站烟气污染物深度脱除技术的分析[J].中国工程科学,2014,16(10):47-51.ZHANG Xiaolu.Analysis of flue gas pollutants deep removal technology for coal-fired power plant[J].Strategic Study of CAE,2014,16(10):47-51.
    [14]胡冬,王海刚,郭婷婷,等.燃煤电厂烟气SO3控制技术的研究及进展[J].科学技术与工程,2015,15(35):92-99.HU Dong,WANG Haigang,GUO Tingting,et al.Research and development of mitigating technology of SO3in flue gas from coal power plants[J].Science Technology and Engineering,2015,15(35):92-99.
    [15]杨建平,赵永椿,张军营,等.燃煤电站飞灰对汞的氧化和捕获的研究进展[J].动力工程学报,2014,34(5):337-345.YANG Jianping,ZHAO Yongchun,ZHANG Junying,et al.Research process on mercury oxidation and capture with fly ash of coal-fired power plant[J].Journal of Chinese Society of Power Engineering,2014,34(5):337-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700