用户名: 密码: 验证码:
水钠锰矿光电催化降解亚甲基蓝及其机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Researches on Photocatalytic Degradation of Methylene Blue by Birnessite and Reaction Mechanism
  • 作者:刘宇琪 ; 谢龙悦 ; 孟繁斌 ; 钟小梅 ; 董发勤 ; 刘明学
  • 英文作者:LIU Yuqi;XIE Longyue;MENG Fanbin;ZHONG Xiaomei;DONG Faqin;LIU Mingxue;College of Life Science and Engineering,Southwest University of Science and Technology;Key Laboratory of Ministry of Education for Solid Waste Treatment and Resource Recycle;
  • 关键词:水钠锰矿 ; 光催化降解 ; 亚甲基蓝 ; 空穴 ; 羟基自由基
  • 英文关键词:birnessite;;photocatalytic;;methylene blue;;hole;;hydroxyl radical
  • 中文刊名:FJKS
  • 英文刊名:Environmental Science & Technology
  • 机构:西南科技大学生命科学与工程学院;固体废物处理与资源化教育部重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:环境科学与技术
  • 年:2019
  • 期:v.42
  • 基金:国家重点基础研究发展计划(“973”计划:2014CB846003);; 国家重点研发计划项目(2016YFC0502204);; 国家自然科学基金项目(41272371,41572035,41502316)
  • 语种:中文;
  • 页:FJKS201901009
  • 页数:7
  • CN:01
  • ISSN:42-1245/X
  • 分类号:64-70
摘要
水钠锰矿在自然界分布广泛、容易制备、光谱响应宽,受到越来越多的关注并被应用于环境治理领域。该研究通过电沉积法高效快速制备了水钠锰矿电极,研究其在可见光下对亚甲基蓝的光催化降解效果,通过添加空穴(h+)捕获剂甲酸和羟基自由基(·OH)捕获剂异丙醇分析光催化降解机理。结果表明,通过X射线衍射(XRD)和拉曼光谱证实合成物质为水钠锰矿,并且无其他矿物结晶相。紫外可见漫反射吸收谱显示水钠锰矿电极可吸收300~700 nm的光。通过Tauc方程计算得水钠锰矿电极直接带隙为2.8 V,间接带隙为2.4 V。在1.0 V恒定电压下,黑暗中反应3.5 h后亚甲基蓝的吸附率为11.0%,而光照下亚甲基蓝的降解率为67.0%,并且12h后降解率可达98.5%。光照下亚甲基蓝的降解率显著提高,印证了水钠锰矿具有良好的表面光催化性质。分别向反应体系中添加0.7%的甲酸和1.0 mmol/L的异丙醇后,亚甲基蓝的降解率降低到47.7%和34.6%;经动力学计算得出甲酸对h+的淬灭率为35.944%,异丙醇对·OH的淬灭率为56.760%。通过加入捕获剂发现水钠锰矿主要通过光生h+和·OH对亚甲基蓝进行氧化降解作用,其中·OH的氧化作用强于h+。
        Based on its wide distribution,easy preparation and broad spectral response,birnessite has been paid more and more attention and applied to environmental protection.Birnessite electrode was prepared with electrodeposition method and its photocatalytic degradation of methylene blue under visible light were investigated.The photocatalytic degradation mechanism was analyzed by adding formic acid as hole(h+) scavenger and isopropanol as hydroxyl radical(·OH) scavenger.The results indicated that X-ray diffraction(XRD) and Raman spectroscopy confirmed that the electrode mineral phase was birnessite with no other phase.The UV-Vis diffuse reflectance spectra illustrated that the birnessite electrode had a significant absorption of visible light from 300 to 700 nm,which direct and indirect band gap were 2.8 eV and 2.4 eV,resperctively,based on Tauc plots calculation.At a constant voltage of 1.0 V conditions,the adsorption rate of methylene blue was 11.0% in the darkness after 3.5 h,while the degradation rate of methylene blue was 67.0% and the degradation rate was 98.5% after 12 h with light illumination.This suggested that birnessite had obvious surface photocatalytic capacity.After adding 0.7% formic acid and 1.0 mmol/L isopropanol to the reaction system,the degradation rate of methylene blue decreased to 47.7% and34.6%,respectively.According to the kinetics calculations,the quenching rate of formic acid to h+was 35.944%,and the quenching rate of isopropanol to ·OH was 56.760%.The above results showed that the h+and ·OH played important role in photocatalytic degradation of methylene blue and the oxidation of ·OH was stronger than that of h+.
引文
[1]Qamar M,Gondal M A,Hayat K,et al.Laser-induced removal of a dye C.I.acid red 87 using n-type WO3semiconductor catalyst[J].Journal of Hazardous Materials,2009,170(2/3):584-589.
    [2]Liao M,Wu K,Chen D.Fast adsorption of crystal violet on polyacrylic acid-bound magnetic nanoparticles[J].Separation Science and Technology,2005,39(7):1563-1575.
    [3]Adak A,Bandyopadhyay M,Pal A.Removal of crystal violet dye from wastewater by surfactant-modified alumina[J].Separation&Purification Technology,2005,44(2):139-144.
    [4]Khelifi E,Gannoun H,Touhami Y,et al.Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors[J].Journal of Hazardous Materials,2008,152(2):683-689.
    [5]Manal M A,Elnaggar S,Elaasar A,et al.Bioremediation of crystal violet using air bubble bioreactor packed with Pseudomonas aeruginosa[J].Water Research,2004,38(20):4313-4322.
    [6]Siminiceanu I,Alexandru C I,Brillas E.A kinetic model for the crystal violet mineralization in water by the electro-Fenton process[J].Environmental Engineering&Management Journal,2008,7(1):9-12.
    [7]Chong M N,Jin B,Chow C W K,et al.Recent developments in photocatalytic water treatment technology:a review[J].Water Research,2010,44(10):2997-3027.
    [8]Neumann Spallart M,Shinde S S,Mahadik M,et al.Photoelectrochemical degradation of selected aromatic molecules[J].Electrochimica Acta,2013,111(6):830-836.
    [9]Ara?a J,Rodríguez C F,Díaz O G,et al.Role of Cu in the Cu-TiO2photocatalytic degradation of dihydroxybenzenes[J].Catalysis Today,2005,101(3/4):261-266.
    [10]Mckenzie R M.The synthesis of birnessite,cryptomelane,and some other oxides and hydroxides of manganese[J].Mineralogical Magazine,1971,38(296):493-502.
    [11]Weaver R M,Hochella M F.The reactivity of seven Mn-oxides with Cr3+aq:a comparative analysis of a complex,environmentally important redox reaction[J].American Mineralogist,2003,88(11/12):2016-2027.
    [12]Chien S W C,Chen H,Wang M,et al.Oxidative degradation and associated mineralization of catechol,hydroquinone and resorcinol catalyzed by birnessite[J].Chemosphere,2009,74(8):1125-1133.
    [13]Hsu Y K,Chen Y,Lin Y,et al.Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light[J].Journal of Materials Chemistry,2012,22(6):2733-2739.
    [14]Sherman D M.Electronic structures of iron(Ⅲ)and manganese(Ⅳ)(hydr)oxide minerals:thermodynamics of photochemical reductive dissolution in aquatic environments[J].Geochimica Et Cosmochimica Acta,2005,69(13):3249-3255.
    [15]Zaied M,Chutet E,Peulon S,et al.Spontaneous oxidative degradation of Indigo carmine by thin films of birnessite electrodeposited onto SnO2[J].Applied Catalysis B:Environmental,2011,107(1/2):42-51.
    [16]Hou J,Li Y,Mao M,et al.Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity[J].Acs Applied Materials&Interfaces,2014,6(17):14981-14987.
    [17]Nakayama M,Shamoto M,Kamimura A.Surfactant-induced electrodeposition of layered manganese oxide with large interlayer space for catalytic oxidation of phenol[J].Chemistry of Materials,2010,22(21):3584-3593.
    [18]Kim J H,Lee H I.Effect of surface hydroxyl groups of pure TiO2and modified TiO2on the photocatalytic oxidation of aqueous cyanide[J].Korean Journal of Chemical Engineering,2004,21(1):116-122.
    [19]Chen Y,Yang S,Wang K,et al.Role of primary active species and TiO2,surface characteristic in UV-illuminated photodegradation of Acid Orange 7[J].Journal of Photochemistry&Photobiology A Chemistry,2005,172(1):47-54.
    [20]Wu C H,Kuo C Y,Wu J T,et al.Photodegradation of C.I.Reactive Red 2 in the Bi2WO6,system:the determination of surface characteristics and photocatalytic activities of Bi2WO6[J].Reaction Kinetics Mechanisms&Catalysis,2016,117(1):391-404.
    [21]Subramonian W,Wu T Y.Effect of enhancers and inhibitors on photocatalytic sunlight treatment of methylene blue[J].Water Air&Soil Pollution,2014,225(4):1922.
    [22]Yu T,Li K,Guo X,et al.Facile decolorization of methylene blue by morphology-dependenceδ-MnO2nanosheetsmodified diatomite[J].Journal of Physics&Chemistry of Solids,2015,87:196-202.
    [23]Chen H,Sayari A,Adnot A,et al.Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation[J].Applied Catalysis B-Environmental,2001,32(3):195-204.
    [24]Majcher E H,Chorover J,Bollag J M,et al.Evolution of CO2during birnessite-induced oxidation of14C-labeled catechol[J].Soil Science Society of America Journal,2000,64(1):1-4.
    [25]Peulon S,Baraize Q,ChausséA.Iron compounds electrodeposited onto a transparent semiconductor:synthesis and characterisation by UV-vis spectroscopy[J].Electrochimica Acta,2007,52(27):7681-7688.
    [26]Nakayama M,Mai N,Shamoto M,et al.Cathodic synthesis of birnessite-type layered manganese oxides for electrocapacitive catalysis[J].Journal of the Electrochemical Society,2012,159(8):A1176-A1182.
    [27]Julien C M,Massot M,Poinsignon C.Lattice vibrations of manganese oxides.Part I.periodic structures[J].Spectrochimica Acta-Part-A:Molecular&Biomolecular Spectroscopy.2004,60(3):689-700.
    [28]Feng L L,Wang J,Han X,et al.Oxidation of formaldehyde over birnessite-type manganese oxides at room-temperature[J].Materials Science Forum,2016,852:547-550.
    [29]Sakai N,Ebina Y,Takada K,et al.Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies[J].Journal of the American Chemical Society,2004,126(18):5851-5858.
    [30]Nakayama M,Mito S,Mohri Y.Enhanced photocurrent in birnessite-type MnO2thin films in the visible and near-infrared regions by scaffolding multi-wall carbon nanotubes[J].Journal of the Electrochemical Society,2014,161(6):H355-H358.
    [31]张嵚.水钠锰矿和锰钾矿的形成、转化途径与机制及对苯酚的降解特性[D].武汉:华中农业大学,2011.Zhang Qin.Pathway and Mechanism of Formation and Transformation of Birnessite and Cryptomelane,and Their Phenol Degradation Characteristic[D].Wuhan:Huazhong Agricultural University,2011.
    [32]Peng L,Liu B,Zeng Q,et al.Highly efficient removal of methylene blue from aqueous solution by a novel fishingnet effect of manganese oxide nano-sheets[J].Clean Technologies&Environmental Policy,2017,19(1):269-277.
    [33]张翰林,李艳,鲁安怀,等.自然界水钠锰矿日光催化作用模拟实验研究[J].南京大学学报:自然科学,2017,53(5):831-840.Zhang Hanlin,Li Yan,Lu Anhuai,et al.Experimental study on the natural photocatalytic reduction of birnessite[J].Journal of NanJing University:Natural Science,2017,53(5):831-840.
    [34]Hsu Y K,Chen Y C,Lin Y G,et al.Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light[J].Journal of Materials Chemistry,2012,22(6):2733-2739.
    [35]Sun Y,Pignatello J J.Evidence for a surface dual hole-radical mechanism in the titanium dioxide photocatalytic oxidation of 2,4-D[J].Environmental Science and Technology,1995,29(8):2065-2072.
    [36]Chen Y,Yang S,Wang K,et al.Role of primary active species and TiO2,surface characteristic in UV-illuminated photodegradation of Acid Orange 7[J].Journal of Photochemistry&Photobiology A Chemistry,2005,172(1):47-54.
    [37]Zhang L S,Wong K H,Yip H Y,et al.Effective photocatalytic disinfection of E.coli K-12 using AgBr-Ag-Bi2WO6nanojunction system irradiated by visible light:the role of diffusing hydroxyl radicals[J].Environmental Science and Technology,2010,44(4):1392-1398.
    [38]Zhu Y,Liu D,Lai Y,et al.Ambient ultrasonic-assisted synthesis,stepwise growth mechanisms,and photocatalytic activity of flower-like nanostructured ZnO and Ag/ZnO[J].Journal of Nanoparticle Research,2014,16(3):1-13.
    [39]Li G,Wong K H,Zhang X,et al.Degradation of Acid Orange 7 using magnetic AgBr under visible light:the roles of oxidizing species[J].Chemosphere,2009,76(9):1185-1191.
    [40]Zhang X,Li G,Wang Y,et al.Microwave electrodeless lamp photolytic degradation of Acid Orange 7[J].Journal of Photochemistry&Photobiology A Chemistry,2006,184(1/2):26-33.
    [41]Bhosale C H.Kinetic analysis of heterogeneous photocatalysis:role of hydroxyl radicals[J].Catalysis Reviews,2013,55(1):79-133.
    [42]任桂平,孙曼仪,鲁安怀,等.纳米水钠锰矿可见光光电化学响应与甲基橙降解活性[J].矿物学报,2017,37(4):373-379.Ren Guiping,Sun Manyi,Lu Anhuai,et al.Photoelectrochemical activity of nano-birnessite in response to visible light and degradation of methyl orange[J].Acta Mineralogica Sinica,2017,37(4):373-379.
    [43]Zhang H,Ding H,Wang X,et al.Photoelectrochemical performance of birnessite films and photoelectrocatalytic activity toward oxidation of phenol[J].Journal of Environmental Sciences,2017,52(2):259-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700