用户名: 密码: 验证码:
纳米水钠锰矿可见光光电化学响应与甲基橙降解活性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photoelectrochemical Activity of Nano-Birnessite in Response to Visible Light and Degradation of Methyl Orange
  • 作者:任桂平 ; 孙曼仪 ; 鲁安怀 ; 李艳 ; 丁竑瑞
  • 英文作者:REN Gui-ping;SUN Man-yi;LU An-huai;LI Yan;DING Hong-rui;The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function,School of Earth and Space Sciences, Peking University;
  • 关键词:水钠锰矿 ; 光电化学 ; 光电流 ; 甲基橙降解
  • 英文关键词:birnessite;;photoelectrochemistry;;photocurrent;;Methyl orange degradation
  • 中文刊名:KWXB
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:造山带与地壳演化教育部重点实验室矿物环境功能北京市重点实验室北京大学地球与空间科学学院;
  • 出版日期:2017-07-27 13:36
  • 出版单位:矿物学报
  • 年:2017
  • 期:v.37
  • 基金:973计划(2014CB846001);; 国家自然科学基金(批准号:41230103;41272003;41402032);; 博士后基金(2014M550552)
  • 语种:中文;
  • 页:KWXB201704001
  • 页数:7
  • CN:04
  • ISSN:52-1045/P
  • 分类号:3-9
摘要
伴随环境污染问题日益加剧,光能的光电转化在催化及环境领域引起广泛关注。水钠锰矿是地表常见锰矿物之一,本文借助电化学电量控制法快速高效制备了纳米水钠锰矿电极。X射线衍射(XRD)、Raman光谱测试表明物相单一为水钠锰矿;原子力显微镜(AFM)观察电极微观形貌可见表面分布有不规则多边形格子状空隙,测定沉积电量为0.5、1.0、1.5 C水钠锰矿厚度分别约为30、200、450 nm。紫外可见漫反射吸收谱显示电极可显著吸收300~600 nm波长可见光,Tauc方程计算电极间接带隙约0.8~1.3 eV,直接带隙约2.0~2.3 eV,Mott-Schottky曲线计算平带电位约1.15 V,三电极载流子浓度分别为3.26×10~(19)、4.63×10~(19)、2.70×1020 cm~(-3)。光电流密度-时间曲线及线性扫描伏安曲线表明电极有良好光电化学响应活性Evs.SCE=1.0 V(饱和甘汞电极)恒电势光照条件下,150 min后0.5、1.0、1.5 C水钠锰矿电极对5 mg/L甲基橙降解率分别为66.3%,70.0%,67.5%,拟合反应速率常数k分别为0.44 h~(-1)、0.48 h~(-1)、0.46 h~(-1)(R2>0.996)。综上,本文研究表明纳米水钠锰矿电极能有效可见光光电催化降解甲基橙等有机污染物。
        With the serious problems of environmental pollution, conversion of solar energy has caused widely attention in the fields of catalytic and environmental protection. Birnessite is one of the most common mineral distributed on earth. Nano-birnessite electrodes were synthesized quickly and effectively by electrochemical method in this paper. X-ray Diffraction(XRD) and Raman spectroscopy confirm that the electrode film has single mineral phase of birnessite. Atomic Force Microscope(AFM) was used to observe the morphology information of birnessite and which distributed irregular polygon lattice spaces. The film thickness of 0.5, 1.0, and 1.5 C birnessite electrodes approximately are 30, 200, and 450 nm, respectively. Moreover, the UV-Vis Diffuse Reflectance spectra illustrate the significant absorption of visible light from 300 to 600 nm. Tauc plots were used to extrapolating an allowed indirect band gap of 0.8-1.3 eV and an allowed direct band gap of 2.0-2.3 eV for electrodes. The flat band potential of three electrodes is 1.15 V and the carrier concentration are 3.26×10~(19), 4.63×10~(19), and 2.70×1020 cm~(-3) respectively evaluated by Mott-Schottky. In addition, the photocurrent density-time curves and LSV curves indicate that the electrodes have great photoelectrochemical activity. Furthermore, photoelectrocatalytic degradation of methyl orange with 5 mg/L concentration by three electrodes were investigated. Results show that degradation rate of methyl orange by 0.5, 1.0, and 1.5 Cbirnessite electrodes reach to 66.3%, 70.0%, and 67.5% respectively after 150 minunder a constant pre-pulsed potential of 1.0 V vs. SCE(Saturated Calomel Electrode). And fitting the first-order kinetics reaction model the constant of reaction rate k are 0.44 h~(-1),0.48 h~(-1), and 0.46 h~(-1)(R2> 0.996). In consequence, the electrochemically deposited nano-birnessite has the ability to degrade phenol and other organic pollution.
引文
[1]Fujishim ma A,Honda K.19772.Electrochemica al photolysis of wa ater at a semiconduu ctor electrode[J].Nature,238(53588):37-38.
    [2]Neumann n-Spallart M,Shin nde S S,Mahadik k M,et al.Photoe electrochemical dee gradation of sele ected aromatic mo olecules[J].Electroo chimica Acta,2013,111:830-836.
    [3]Shinde SS S,Bhosale C H,Rajpure K Y.Oxi dative degradation n of acid orange 7using Ag-doped z zinc oxide thin film ms[J].Journal of PPhotochemistry and Phot tobiology B:Biolo ogy,2012,117:2622-268.
    [4]Zhang ZZ H,Yuan Y,Shi G Y,et al.Photo oelectrocatalytic ac ctivity of highly oo rdered Ti O2 nano otube arrays electr rode for azo dye dd egradation[J].Environm mental Science&TTechnology,2007,,41(17):6259-62663.
    [5]Hua Z L,Dai Z Y,Bai X,et al.Copper nanoparticles sensitized Ti O2 nanotube arrays electrode with enhanced photoelectrocatalytic activity for diclofenac degradation[J].Chemical Engineering Journal,2016,283:514-523.
    [6]Sun L,Cai J H,Wu Q,et al.N-doped Ti O2 nanotube array photoelectrode for visible-light-induced photoelectrochemical and photoelectrocatalytic activities[J].Electrochimica Acta,2013,108:525-531.
    [7]Zhang X W,Lei L C.Preparation of photocatalytic Fe2O3-Ti O2 coatings in one step by metal organic chemical vapor deposition[J].Applied Surface Science,2008,254(8):2406-2412.
    [8]Yang K,Pu W H,Tan Y B,et al.Enhanced photoelectrocatalytic activity of Cr-doped Ti O2 nanotubes modified with polyaniline[J].Materials Science in Semiconductor Processing,2014,27:777-784.
    [9]Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting[J].Chemical Society Reviews,2009,38(1):253-278.
    [10]Shinde S S,Sami A,Lee J H.Sulfur mediated graphitic carbon nitride/S-Se-graphene as a metal-free hybrid photocatalyst for pollutant degradation and water splitting[J].Carbon,2016,96:929-936.
    [11]Hepel M,HazeltonS.Photoelectrocatalytic degradation of diazo dyes on nanostructured WO3 electrodes[J].Electrochimica acta,2005,50(25):5278-5291.
    [12]Turekian K K,Wedepohl K H.Distribution of the elements in some major units of the earth's crust[J].Geological Society of America Bulletin,1961,72(2):175-192.
    [13]Drits V A,Silvester E,Gorskhov A I,et al.Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite;I,Results from X-ray diffraction and selected-area electron diffraction[J].American Mineralogist,1997,82(9-10):946-961.
    [14]鲁安怀,卢晓英,任子平,等.天然铁锰氧化物及氢氧化物环境矿物学研究[J].地学前缘,2000,7(2):473-483.
    [15]鲁安怀.矿物学环境属性研究新进展(代序)[J].岩石矿物学杂志,2015,34(6):795-802.
    [16]Hsu Y K,Chen Y C,Lin Y G,et al.Reversible phase transformation of MnO 2 nanosheets in an electrochemical capacitor investigated by in situ Raman spectroscopy[J].Chemical Communications,2011,47(4):1252-1254.
    [17]Pinaud B A,Chen Z B,Abram D N,et al.Thin films of sodium birnessite-type Mn O2:optical properties,electronic band structure,and solar photoelectrochemistry[J].The Journal of Physical Chemistry C,2011,115(23):11830-11838.
    [18]Sherman D M.Electronic structures of iron(III)and manganese(IV)(hydr)oxide minerals:thermodynamics of photochemical reductive dissolution in aquatic environments[J].Geochimica et Cosmochimica Acta,2005,69(13):3249-3255.
    [19]Zaied M,Chutet E,Peulon S,et al.Spontaneous oxidative degradation of indigo carmine by thin films of birnessite electrodeposited onto Sn O2[J].Applied Catalysis B:Environmental,2011,107(1-2):42-51.
    [20]Hou J T,Li Y Z,Mao M Y,et al.Tremendous effect of the morphology of birnessite-type manganese oxide nanostructures on catalytic activity[J].ACS Applied Materials&Interfaces,2014,6(17):14981-14987.
    [21]Yang S G,Liu Y Z,Sun C.Preparation of anatase Ti O2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution[J].Applied Catalysis A:General,2006,301(2):284-291.
    [22]Zhang H Q,Ding H R,Wang X,et al.Photoelectrochemical performance of birnessite films and photoelectrocatalytic activity toward oxidation of phenol[J].Journal of Environmental Sciences,2016,52:259-267.
    [23]Nakayama M,Nishiyama M,Shamoto M,et al.Cathodic synthesis of birnessite-type layered manganese oxides for electrocapacitive catalysis[J].Journal of The Electrochemical Society,2012,159(8):A1176-A1182.
    [24]Bennani Y,El-Kalliny A S,Appel P W,et al.Enhanced solar light photoelectrocatalytic activity in water by anatase-to-rutile Ti O2transformation[J].Journal of Advanced Oxidation Technologies,2014,17(2):285-296.
    [25]Hsu Y K,Chen Y C,Lin Y G,et al.Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light[J].Journal of Materials Chemistry,2012,22(6):2733-2739.
    [26]Julien C,Massot M,Baddour-Hadjean R,et al.Raman spectra of birnessite manganese dioxides[J].Solid State Ionics,2003,159(3-4):345-356.
    [27]Oh E J,Kim T W,Lee K M,et al.Unilamellar nanosheet of layered manganese cobalt nickel oxide and its heterolayered film with polycations[J].ACS Nano,2010,4(8):4437-4444.
    [28]Kleiman-Shwarsctein A,Huda M N,Walsh A,et al.Electrodeposited aluminum-dopedα-Fe2O3 photoelectrodes:experiment and theory[J].Chemistry of Materials,2009,22(2):510-517.
    [29]Zhang M,Pu W,Pan S,et al.Photoelectrocatalytic activity of liquid phase depositedα-Fe2O3 films under visible light illumination[J].Journal of Alloys and Compounds,2015,648:719-725.
    [30]Shinde S S,Bhosale C H,Rajpure K Y.Kinetic analysis of heterogeneous photocatalysis:role of hydroxyl radicals[J].Catalysis Reviews,2013,55(1):79-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700