用户名: 密码: 验证码:
北京市北运河水体中化学需氧量组分含量及其可生化性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Concentrations of Chemical Oxygen Demand Fractions and Their Biodegradability in Waters of Beiyun River, Beijing
  • 作者:杜伊 ; 胡玮璇 ; 王晓燕 ; 陈永娟 ; 刘洋
  • 英文作者:DU Yi;HU Weixuan;WANG Xiaoyan;CHEN Yongjuan;LIU Yang;College of Resources, Environment and Tourism, Capital Normal University;Research Center of Aquatic Environment in the Capital Region;
  • 关键词:化学需氧量组分 ; 可生化性 ; 北运河
  • 英文关键词:fractions of chemical oxygen demand;;biodegradability;;Beiyun River
  • 中文刊名:KXSD
  • 英文刊名:Wetland Science
  • 机构:首都师范大学资源环境与旅游学院;首都师范大学首都圈水环境研究中心;
  • 出版日期:2017-06-15
  • 出版单位:湿地科学
  • 年:2017
  • 期:v.15
  • 基金:国家自然科学基金项目(41271495);; 国家水体污染控制与治理科技重大专项项目(2009ZX07209-001-02)资助
  • 语种:中文;
  • 页:KXSD201703022
  • 页数:8
  • CN:03
  • ISSN:22-1349/P
  • 分类号:152-159
摘要
于2013年3月18日、7月20日和10月26日,在北京市北运河上游河段干流和支流共设置19个采样点,利用NOVA400参数水质仪,测定水样中的化学需氧量含量;采用活性污泥生物处理法,利用BM-Advance呼吸仪,进一步测定计算和划分水样中的化学需氧量组分,并探讨其可生化性。研究结果表明,北运河水体中总化学需氧量含量较高,水质较差。各采样点水体中的化学需氧量中,溶解性不可生物降解组分含量都最高,易生物降解组分含量最低,说明北运河水体的可生物降解性较差。主成分分析结果显示,3月18日(雨季前)北运河可生化性较差,溶解性不可生物降解组分对水体的影响最大,贡献率为34.33%;7月20日(雨季中)可生化性无明显变化,易生物降解组分和异养菌对水体的影响较大,累计贡献率为41.35%;10月26日(雨季后)异养菌对水体影响较大,贡献率为31.62%。空间聚类分析结果显示,第一类采样点集中在北运河上游和下游,该区域主要为郊区,水体中溶解性不可降解组分含量较高,可生化性较差;第二类采样点主要在闸坝附近,颗粒性不可生物降解组分含量较高;第三类采样点集中在北运河中游地区,慢速生物降解组分和溶解性不可降解组分的含量较高,可生化性提高。
        Taking the upper reaches of Beiyun River as study area, 19 sampling sites of main stream and tributaries were determined to investigate the components of chemical oxygen demand. Water quality instrument NOVA 400 was used to determine chemical oxygen demand in waters. Based on activated sludge biological method, respirometer BM-Advance was used to determine and calculate the fractions of chemical oxygen demand in the waters. And the biodegradability with the application of aerobic respiration measurement and physical-chemical process on 18 th March, 20 th July and 26 th October of 2013. The results showed that Beiyun River had high concentration of chemical oxygen demand and low water quality. In terms of chemical oxygen demand at each sampling point, soluble inert fraction was the highest, and readily biodegradable fraction was the lowest, indicating that the biodegradability was weak in Beiyun River. The results of principal component analysis showed that the biodegradability of Beiyun River was relatively bad before the rainy season(18th March), and the impact of soluble inert fraction on water was the greatest with the contribution rate of34.33%. There was no significant change in biodegradability in the middle of rainy season(20th July), and the impact of readily biodegradable fraction and heterotrophic bacterium on water was relatively great with the accumulative contribution rate of 41.35%. Heterotrophic bacterium affects water significantly at the end of the rainy season(26th October) with the contribution rate of 31.62%. The results of spatial clustering analysis showed that the first category of sampling points concentrating on the upstream and downstream was mainly in the suburb area. And the high concentration of soluble inert fraction indicated that the biodegradability of this region was poor. The second category of sampling points was mainly near the gate dam, whose inert particulate fraction was relatively high. The third category of sampling points concentrates on the midstream of the Beiyun River, whose slowly hydrolysable chemical oxygen demand fraction and soluble inert fraction were relatively high and the biodegradability of this region gets enhanced.
引文
[1]刘畅,王继富.5个时期黑龙江省天然湿地动态及其影响因素研究[J].湿地科学,2017,15(1):80-84.
    [2]李延,毕见霖,王立硕,等.暴雨径流对非常规水源补给城市河流水质冲击研究[J].环境科学学报,2015,35(2):443-448.
    [3]梁银秀,周卿伟,阎百兴,等.在冷季利用人工湿地处理泉州永春县养猪场废水的效果研究[J].湿地科学,2017,15(2):229-236.
    [4]Karahan?Dogruel S,Dulekgurgen E,et al.COD fractionation of tannery wastewaters-Particle size distribution,biodegradability and modeling[J].Water Research,2008,42(4-5):1083-1092.
    [5]Eremektar G,Selcuk H,Meric S.Investigation of the relation between COD fractions and the toxicity in a textile finishing industry wastewater:Effect of preozonation[J].Desalination,2007,211(1-3):314-320.
    [6]李峰,吴敏,杨哲.活性污泥数学模型在我国的研究进展[J].中国资源综合利用,2007,(11):21-23.
    [7]杨双春,王晓珍,潘一,等.国内外活性污泥模型研究进展[J].科技导报,2012,30(26):75-79.
    [8]卢培利,张代钧,张欣,等.呼吸测量法测定废水中活性异养菌COD组分[J].环境工程学报,2008,2(8):1017-1020.
    [9]周振,吴志超,王志伟,等.基于活性污泥模型的污水COD组分划分方案研究[J].环境科学,2010,31(6):1478-1482.
    [10]Ginestet P,Maisonnier A,Sperandio M.Wastewater COD characterization:biodegradability of physico-chemical fractions[J].Water Sci.Technol.,2002,45(6):89-97.
    [11]张代钧,艾海男,卢培利,等.混合呼吸仪同时表征废水RBCOD和SBCOD组分[J].环境科学,2009,30(8):2293-2296.
    [12]Zhang S,Li Y,Zhang T,et al.An integrated environmental decision support system for water pollution control based on TMDL-A case study in the Beiyun River watershed[J].Journal of Environmental Management,2015,156:31-40.
    [13]廖日红.非常规水源补给型地表水污染特征与控制技术研究[D].北京:中国矿业大学,2015.
    [14]荆红卫,张志刚,郭婧.北京北运河水系水质污染特征及污染来源分析[J].中国环境科学,2013,33(2):319-327.
    [15]鲁亢,杨尚源,梁志伟,等.有机物生物降解性评价方法综述[J].应用生态学报,2013,24(2):597-606.
    [16]宋志文,夏文香,曹军.海洋石油污染物的微生物降解与生物修复[J].生态学杂志,2004,23(3):99-102.
    [17]赵霏,黄迪,郭逍宇,等.北京市北运河水系河道水质变化及其对河岸带土地利用的响应[J].湿地科学,2014,12(3):380-387.
    [18]郭栋鹏,徐明德.黄海南部海水中COD降解规律的研究[J].太原理工大学学报,2008,8(4):358-361.
    [19]李文赞,李叙勇,王慧亮,等.滏阳河主要水环境污染物空间分布特性研究[J].环境科学学报,2012,32(11):2814-2819.
    [20]温强.基于碳氮同位素技术探析北京城市河流有机质的来源[D].北京:首都师范大学,2012.
    [21]郑艳侠,冯绍元,姜娜,等.北京市北运河流域农业非点源污染类型及贡献率分析[J].中国农村水利水电,2010,(8):30-33.
    [22]刘志刚.橡胶坝对河流水质及大型底栖动物的影响[D].唐山:河北联合大学,2012.
    [23]于洋,王晓燕,张鹏飞.北运河水体浮游细菌群落的空间分布特征及其与水质的关系[J].生态毒理学报,2012,(3):337-344.
    [24]刘克.北京市典型河湖再生水补水生态环境效应研究[D].北京:首都师范大学,2012.
    [25]李延,毕见霖,王立硕,等.暴雨径流对非常规水源补给城市河流水质冲击研究[J].环境科学学报,2015,35(2):443-448.
    [26]Wu J,Yan G,Zhou G,et al.Wastewater COD biodegradability fractionated by simple physical-chemical analysis[J].Chemical Engineering Journal,2014,258:450-459.
    [27]张伟,张洪,单保庆.北运河源头区沙河水库沉积物重金属污染特征研究[J].环境科学,2012,33(12):4284-4290.477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700