用户名: 密码: 验证码:
水淹条件下秋华柳对Cd污染土壤化学性质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Salix variegata on the Chemical Properties of Cd-Contaminated Soils Under Flooding
  • 作者:陈红纯 ; 曾成城 ; 李瑞 ; 王婷 ; 周翠 ; 吴科君 ; 马文超 ; 魏虹
  • 英文作者:CHEN Hong-chun;ZENG Cheng-cheng;LI Rui;WANG Ting;ZHOU Cui;WU Ke-jun;MA Wen-chao;WEI Hong;Key Laboratory of Eco-Environments in Three Gorges Reservoir Region,Ministry of Education/Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region/School of Life Sciences,Southwest University;Agricultural Resources and Environment Research Institute,Guangxi Academy of Agricultural Sciences;Panzhihua Tourism Bureau;
  • 关键词:秋华柳 ; Cd污染 ; 水淹 ; 土壤化学性质 ; 三峡库区消落带
  • 英文关键词:Salix variegata;;cadmium stress;;flooding;;chemical property of the soil;;hydro-fluctuation zone of the Three Gorges Reservoir
  • 中文刊名:XNND
  • 英文刊名:Journal of Southwest University(Natural Science Edition)
  • 机构:三峡库区生态环境教育部重点实验室/重庆市三峡库区植物生态与资源重点实验室/西南大学生命科学学院;广西农业科学院农业资源与环境研究所;攀枝花市旅游局;
  • 出版日期:2019-01-25
  • 出版单位:西南大学学报(自然科学版)
  • 年:2019
  • 期:v.41;No.290
  • 基金:国家国际科技合作专项(2015DFA90900);; 三峡后续工作库区生态与生物多样性保护专项(5000002013BB5200002);; 国家“十三五”重点研发计划项目(2017YFC0505305-003);; 中央财政林业科技推广示范资金项目(20170183)
  • 语种:中文;
  • 页:XNND201902004
  • 页数:10
  • CN:02
  • ISSN:50-1189/N
  • 分类号:23-32
摘要
为探究秋华柳(Salix variegata Franch.)在消落带水淹环境中对Cd污染土壤化学性质的影响,设置无镉处理组(Cd0)和镉浓度为2mg/kg的镉处理组(Cd2),水分设置为正常供水组及土壤表面以上5cm水淹组,所有处理组包括秋华柳种植组和无植物组.结果表明:1)秋华柳种植及水分处理均显著降低了土壤的pH值,使土壤酸碱度趋向于中性.2)所有处理及其交互作用未对土壤有机质质量分数表现出显著影响.3)秋华柳种植、水分处理及其交互作用极显著影响了土壤全氮质量分数;植物处理以及植物与Cd的交互作用显著影响土壤全磷质量分数;土壤全钾质量分数受到Cd处理、植物与水分以及水分与Cd处理之间交互作用的影响显著.水淹条件下种植秋华柳后,其土壤全氮质量分数为正常供水条件下裸地的79%;在Cd污染环境中,种植秋华柳使土壤全磷质量分数降低了15%,水分与植物的联合处理使全钾质量分数降低21%.4)与裸地正常供水组相比,水淹条件下秋华柳种植显著提高了土壤碱解氮质量分数;土壤速效磷质量分数仅受到Cd处理的影响,植物和水分处理未对土壤速效磷质量分数形成显著性影响;在无Cd环境中,与正常供水土壤相比,水淹显著降低了土壤速效磷的质量分数.研究表明,水淹条件下,秋华柳的种植显著降低土壤pH值,将对土壤中Cd离子形态产生明显影响,有利于植物对Cd的吸收.土壤营养元素的潜在供应能力有所降低,供应容量与供应强度随元素种类的变化以及外界环境的影响而表现出一定的差异性.因此,建议在秋华柳修复消落带Cd污染土壤的过程中,严格监控土壤中营养元素的质量分数,在必要的时候可在每年退水期适当施肥以促进秋华柳的生长,从而保证更好的植物修复效果.
        To explore the effects of Salix variegata on the pH,organic matter and nutrient contents of Cdcontaminated soils under flooding,multifactor experimental treatments were applied under two planting levels,and two moisture and two Cd concentration treatments.The two moisture treatments were control(well-watered condition)and flooding(flooding 5cm above soil surface).Two levels of Cd addition were implemented:control(Cd0,0mg/kg)and Cd(Cd2,2mg/kg).Each treatment involved a planting group and a non-planting group of S.variegata.Soil pH significantly decreased under the condition of S.variegata planting and flooding,which tended to be neutral.All the three treatment factors and their interaction showed no significant influence on the organic matter content in the soil.S.variegata planting,flooding and their interaction significantly affected soil total N content.S.variegata planting,Cd and their interaction significantly influenced soil total P content.S.variegata planting,Cd and flooding and the interaction between planting and Cd significantly affected soil total K content.Soil TN content under the planting and flooding condition was 79%of the treatment of non-planting with well-watered condition.Under the condition of Cd contamination,S.variegata planting reduced the TP content of the soil by 15%,and the combination of S.variegata planting and flooding reduced TK content of the soil by 21%.Compared with the treatment of no S.variegata planting with well-watered condition,S.variegata planting significantly increased the content of soil alkali hydrolysable under flooding.Soil available P content was influenced by Cd stress and not significantly affected by S.variegata planting and flooding.Compared with the well-watered condition,flooding significantly reduced soil AP content in a Cd-free environment.The results indicated that the pH value of soil was significantly decreased under the conditions of S.variegata planting and flooding,which would have a significant effect on the Cd bioactivity in the soil,which was beneficial to plant Cd uptake.The potential supply capacity of soil nutrient elements was decreased,and the supply capacity and supply intensity showed some differences with the change of element types and the influence of external environment.Therefore,it is suggested that the contents of nutrient elements in the soil should be strictly monitored in the process of the phytoremediation for Cd-contaminated soil,and fertilizers should be applied properly in the de-submergence period to promote the growth of S.variegata,thus ensuring a better effect for phytoremediation of the Cd-contaminated soil.
引文
[1]苏维词.三峡库区消落带的生态环境问题及其调控[J].长江科学院院报,2004,21(2):32-34,41.
    [2] SINGH S,EAPEN S,D’SOUZA S F.Cadmium Accumulation and Its Influence on Lipid Peroxidation and Antioxidative System in an Aquatic Plant,Bacopa monnieri L[J].Chemosphere,2006,62(2):233-246.
    [3]鲍玉海,贺秀斌,钟荣华,等.三峡水库消落带植被重建途径及其固土护岸效应[J].水土保持研究,2014,21(6):171-174,180.
    [4]刘意章,肖唐付,宁增平,等.三峡库区巫山建坪地区土壤镉等重金属分布特征及来源研究[J].环境科学,2013,34(6):2390-2398.
    [5]唐将,王世杰,付绍红,等.三峡库区土壤环境质量评价[J].土壤学报,2008,45(4):601-607.
    [6]王业春,雷波,杨三明,等.三峡库区消落带不同水位高程土壤重金属含量及污染评价[J].环境科学,2012,33(2):612-617.
    [7] HE Y,RUI H Y,CHEN C,et al.The Role of Roots in the Accumulation and Removal of Cadmium by the Aquatic Plant Hydrilla verticillata[J].Environmental Science&Pollution Research,2016,23(13):13308-13316.
    [8] SINGH A,KUMAR C S,AGARWAL A.Effect of Lead and Cadmium on Aquatic Plant Hydrilla verticillata[J].Journal of Environmental Biology,2013,34(6):1027-1031.
    [9] PIOTROWSKA A,BAJGUZ A,GODLEWSKA-ZYKIEWICZ B,et al.Changes in Growth,Biochemical Components,and Antioxidant Activity in Aquatic Plant Wolffia arrhiza(Lemnaceae)Exposed to Cadmium and Lead[J].Archives of Environmental Contamination&Toxicology,2010,58(3):594-604.
    [10]WANG T J,JIN P,LIU X.Characterization of Heavy Metal Contamination in the Soil and Sediment of the Three Gorges Reservoir,China[J].Environmental Letters,2017,52(3):201-209.
    [11]ISLAM M S,SAITO T,KURASAKI M.Phytofiltration of Arsenic and Cadmium by Using an Aquatic Plant,Micranthemum umbrosum:Phytotoxicity,Uptake Kinetics,and mechanism[J].Ecotoxicology&Environmental Safety,2015,112:193-200.
    [12]KOVIK J,BABULA P,HEDBAVNY J.Comparison of Vascular and Non-Vascular Aquatic Plant as Indicators of Cadmium Toxicity[J].Chemosphere,2017,180:86-92.
    [13]MARQUES A P G C,RANGEL A O S S,CASTRO P M L.Remediation of Heavy Metal Contaminated Soils:Phytoremediation as a Potentially Promising Clean-up Technology[J].Critical Reviews in Environmental Science&Technology,2009,39(8):622-654.
    [14]曾成城,陈锦平,马文超,等.水淹生境下秋华柳对镉污染土壤研究修复能力[J].生态学报,2016,36(13):3978-3986.
    [15]陈锦平,曾成城,马文超,等.水淹和非水淹条件下秋华柳扦插苗镉积累特征比较[J].林业科学,2017,53(4):166-174.
    [16]程瑞梅,王晓荣,肖文发,等.三峡库区消落带水淹初期土壤物理性质及金属含量初探[J].水土保持学报,2009,23(5):156-161.
    [17]杨予静,李昌晓,马朋.三峡水库城区消落带人工草本植被土壤养分含量研究[J].草业学报,2015,24(4):1-11.
    [18]MUEHLBACHOVA G,SIMON T,PECHOVA M.The Availability of Cd,Pb and Zn and Their Relationships with Soil pH and Microbial Biomass in Soils Amended by Natural Clinoptilolite[J].Plant Soil&Environment,2005,51(1):26-33.
    [19]ZHAO K L,LIU X M,XU J M,et al.Heavy Metal Contaminations in a Soil-Rice System:Identification of Spatial Dependence in Relation to Soil Properties of Paddy Fields[J].Journal of Hazardous Materials,2010,181(1-3):778-787.
    [20]BAKEN S,DEGRYSE F,VERHEYEN L,et al.Metal Complexation Properties of Freshwater Dissolved Organic Matter Are Explained by Its Aromaticity and by Anthropogenic Ligands[J].Environmental Science&Technology,2011,45(7):2584-2590.
    [21]吴巍,赵军.植物对氮素吸收利用的研究进展[J].中国农学通报,2010,26(13):75-78.
    [22]曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学报,1999,27(4):96-101.
    [23]郑炳松,程晓建,蒋德安,等.钾元素对植物光合速率、Rubisco和RCA的影响[J].浙江农林大学学报,2002,19(1):104-108.
    [24]曾成城,陈锦平,魏虹,等.水淹生境下秋华柳对Cd污染土壤微生物数量及酶活性的影响[J].生态学报,2017,37(13):4327-4334.
    [25]ANDRESEN E,KAPPEL S,STRK H,et al.Cadmium Toxicity Investigated at the Physiological and Biophysical Levels Under Environmentally Relevant Conditions Using the Aquatic Model Plant Ceratophyllum Demersum[J].New Phytologist,2016,210(4):1244-1258.
    [26]罗毅,敖亮,罗财红,等.三峡库区消落带土壤镉环境风险研究[J].环境科学与管理,2014,39(5):180-183.
    [27]李昌晓,钟章成,刘芸.模拟三峡库区消落带土壤水分变化对落羽杉幼苗光合特性的影响[J].生态学报,2005,25(8):1953-1959.
    [28]鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000:10-25.
    [29]任庆水,马朋,李昌晓,等.三峡库区消落带落羽杉(Taxodium distichum)与柳树(Salix matsudana)人工植被对土壤营养元素含量的影响[J].生态学报,2016,36(20):6431-6444.
    [30]STOUT L M,DODOVA E N,TYSON J F,et al.Phytoprotective Influence of Bacteria on Growth and Cadmium Accumulation in the Aquatic Plant Lemna minor[J].Water Research,2010,44(17):4970-4979.
    [31]孙儒泳.基础生态学[M].北京:高等教育出版社,2002:90-121.
    [32]李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003(1):24-26.
    [33]苏静,王智慧,李仕伟,等.pH对酸性紫色土中硝化作用与硝化微生物的影响[J].西南大学学报(自然科学版),2017,39(3):142-148.
    [34]张金洋,王定勇,石孝洪.三峡水库消落区淹水后土壤性质变化的模拟研究[J].水土保持学报,2004,18(6):120-123.
    [35]唐罗忠,生原喜久雄,户田浩人,等.湿地林土壤的Fe2+,Eh及pH值的变化[J].生态学报,2005,25(1):103-107.
    [36]王宝山.植物生理学[M].2版.北京:科学出版社,2007:87-91.
    [37]刘媛,马文超,张雯,等.镉胁迫对秋华柳根系活力及其Ca、Mg、Mn、Zn、Fe积累的影响[J].应用生态学报,2016,27(4):1109-1115.
    [38]TARAFDAR J C,CLAASSEN N.Organic Phosphorus Compounds as a Phosphorus Source for Higher Plants Through the Activity of Phosphatases Produced by Plant Roots and Microorganisms[J].Biology&Fertility of Soils,1988,5(4):308-312.
    [39]赵宽,周葆华,马万征,等.不同环境胁迫对根系分泌有机酸的影响研究进展[J].土壤,2016,48(2):235-240.
    [40]WANG A S,ANGLE J S,CHANEY R L,et al.Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens[J].Plant&Soil,2006,281(1):325-337.
    [41]BADAWY S H,HELAL M I,CHAUDRI A M,et al.Soil Solid-Phase Controls Lead Activity in Soil Solution[J].Journal of Environmental Quality,2002,31(1):162-167.
    [42]SUKREEYAPONGSE O,HOLM P E,STROBEL B W,et al.pH-Dependent Release of Cadmium,Copper,and Lead from Natural and Sludge-Amended Soils[J].Journal of Environmental Quality,2002,31(6):1901-1909.
    [43]杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报,2005,20(4):539-543.
    [44]BILEN S,ELIK A,ALTKAT S.Effects of Strip and Full-Width Tillage on Soil Carbon IV Oxide-Carbon(CO2-C)Fluxes and on Bacterial and Fungal Populations in Sunflower[J].African Journal of Biotechnology,2010,9(38):6312-6319.
    [45]SAHRAWAT K L.Organic Matter Accumulation in Submerged Soils[J].Advances in Agronomy,2003,81(3):169-201.
    [46]毛文韬,李堂中,辜夕容,等.三峡库区消落带不同高程柳树林地养分特征[J].西南大学学报(自然科学版),2016,38(3):119-125.
    [47]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998(2):37-42.
    [48]FRSTNER U,WITTMANN G T W.Metal Pollution in the Aquatic Environment[M].Berlin:Springer-Verlag,1979:45-48.
    [49]KRALOVA M,MASSCHELEYN P H,JR W H P.Redox Potential as an Indicator of Electron Availability for Microbial Activity and Nitrogen Transformations in Aerobic Soil[J].Zentralblatt Fuer Mikrobiologie,1992,147(6):388-399.
    [50]KEMMITT S J,WRIGHT D,GOULDING K W T,et al.pH Regulation of Carbon and Nitrogen Dynamics in Two Agricultural Soils[J].Soil Biology&Biochemistry,2006,38(5):898-911.
    [51]陈同斌,李海翔,雷梅,等.植物修复过程中蜈蚣草对土壤养分的吸收动态:5年田间定位试验[J].环境科学学报,2010(2):402-408.
    [52]王林,周启星,孙约兵.氮肥和钾肥强化龙葵修复镉污染土壤[J].中国环境科学,2008,28(10):915-920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700