用户名: 密码: 验证码:
W-OH砒砂岩固结体干湿循环特性及其细观机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanical Properties and Meso-mechanism of Pisha Sandstone with W-OH Solidified Under Drying-wetting Cycles
  • 作者:马雯波 ; 丁哲 ; 吴智仁 ; 梁止水 ; 杨才千
  • 英文作者:MA Wenbo;DING Zhe;WU Zhiren;LIANG Zhishui;YANG Caiqian;College of Civil Engineering and Mechanics,Xiangtan University;Hunan Key Laboratory of Geomechanics and Engineering Safety,Xiangtan University;School of the Environment and Safety Engineering,Jiangsu University;School of Civil Engineering,Southeast University;
  • 关键词:干湿循环 ; W-OH砒砂岩固结体 ; 无侧限抗压强度 ; 三轴抗压强度 ; 微观结构分析
  • 英文关键词:drying-wetting cycles;;W-OH solidified Pisha sandstone;;unconfined compressive strength;;triaxial compressive strength;;microstructure
  • 中文刊名:STTB
  • 英文刊名:Bulletin of Soil and Water Conservation
  • 机构:湘潭大学土木工程与力学学院;湘潭大学湖南岩土力学与工程安全重点实验室;江苏大学环境与安全工程学院;东南大学土木工程学院;
  • 出版日期:2018-12-15
  • 出版单位:水土保持通报
  • 年:2018
  • 期:v.38;No.227
  • 基金:国家重点研发计划项目“砒砂岩区生态安全保障技术”(2017YFC0504505);; 国家自然科学基金项目(11502226);; 湖南省重点研发项目(2017WK2032)
  • 语种:中文;
  • 页:STTB201806004
  • 页数:8
  • CN:06
  • ISSN:61-1094/X
  • 分类号:28-34+40
摘要
[目的]对W-OH砒砂岩固结体干湿循环特性及其细观机理进行研究,为实现W-OH固结改良砒砂岩及其耐久性研究提供科学依据。[方法]采用W-OH(亲水性聚氨酯材料)对砒砂岩进行固结处理,基于无侧限抗压试验、三轴抗压试验,研究其在干湿循环条件下的力学性能,并结合SEM,EDS和称重法对其干湿循环后样品微观结构、元素和质量损失进行分析,以获得其破坏机理。[结果]W-OH砒砂岩固结体的无侧限抗压强度、弹性模量和黏聚力在1~3次干湿循环后升高;在3~9次干湿循环后,固结体的力学强度降低;9次之后,剩下高黏结力的W-OH胶结体包裹于砒砂岩颗粒表面,力学强度趋于稳定。内摩擦角在1~9次干湿循环后上下波动,9次干湿循环后趋于稳定。采用碳元素分析和质量损失分析相结合的方法对土样中W-OH流失特性进行评价,发现土样在1~9次干湿循环中W-OH胶结体逐渐降低,并在9次干湿循环后达到稳定,这与上述宏观力学变化的规律相似,验证了破坏机理,为判断其长期特性提供理论依据。[结论]研究表明可将9次干湿循环后达到稳定的W-OH砒砂岩固结体的力学性质作为土体的长期力学特性。
        The effects of drying-wetting cycles on the mechanical properties and meso-mechanism of the hydrophilic polyurethane material(W-OH)solidified Pisha sandstone were conducted to provide scientific basis for the study of W-OH consolidation amending Pisha sandstone and its durability.W-OH was used to consolidate the Pisha sandstone in this study.Macroscopic mechanical properties of the W-OH solidified Pisha sandstone were tested by unconfined compression experiment and triaxial compression experiment.To obtain the meso-mechanism,SEM,EDS and weighing methods were used to analyze the microstructure,elements,and quality losses of the sample after drying-wetting cycles.The results showed that unconfined compressive strength,elastic modulus,and cohesion of the W-OH solidified Pisha sandstone increased after dryingwetting cycles of 1~3times.During drying-wetting cycles of 3~9times,the mechanical strength of the W-OH solidified Pisha sandstone decreased.the rest solidified W-OH with high cohesive forces remained on thesurface of the Pisha sandstone particles and the mechanical strength tended to be stable after drying-wetting cycles9 times.The internal friction angle varied with fluctuation from 1to 9time drying-wetting cycles and stabilized after 9times.The W-OH loss in the solidified soil samples was evaluated by the carbon element analysis and mass loss analysis.The solidified W-OH gradually decreased during drying-wetting cycles of 1~9times and became stable after 9times,which proved meso-mechanism of macroscopic mechanical properties above-mentioned and provided theoretical basis for long-term characteristics of W-OH consolidated Pisha sandstone.The results of this study suggest that the mechanical properties of W-OH solidified Pisha sandstone after 9drying-wetting cycles can be considered as the long-term mechanical properties of this material.
引文
[1]石迎春,叶浩,侯宏冰,等.内蒙古南部砒砂岩侵蚀内因分析[J].地球学报,2004,25(6):659-664.
    [2] Zhao G,Mu X,Wen Z,et al.Soil erosion,conservation,and eco-environment changes in the loess platean of China[J].Land Degradation&Development,2013,24(5):499-510.
    [3] Guo Jiao,Shi Yingchun,Wu Lijie.Gravity erosion and lithology in Pisha sandstone in southern Inner Mongolia[J].Journal of Ground water Science and Engineering,2015,3(1):45-58.
    [4]肖培青,姚文艺,刘慧.砒砂岩地区水土流失研究进展与治理途径[J].人民黄河,2014,36(10):92-94.
    [5]王愿昌,吴永红,寇权,等.砒砂岩分布范围界定与类型区划分[J].中国水土保持科学,2007,5(1):14-18.
    [6]拾兵,曹叔尤.沟道植物坝的水土保持功效[J].土壤侵蚀与水土保持学报,1999,5(6):15-20.
    [7]毕慈芬,李桂芬.砒砂岩地区沟道沙棘植物“柔性坝”原型拦沙研究[J].国际沙棘研究与开发,2003,1(1):6-12.
    [8] Yang Fangshe,Cao Mingming,Li Huaien E.Simulation of sediment retention effects of the single seabuckthorn flexible dam in the Pisha sandstone area[J].Ecological Engineering,2013,52(3):228-237.
    [9]韩霁昌,刘彦随,罗林涛.毛乌素沙地砒砂岩与沙快速复配成土核心技术研究[J].中国土地科学,2012,26(8):87-94.
    [10] Ahmed A,Keizo U.Environmental effects on durability of soil stabilized with recycled gypsum[J].Cold Regions Science and Technology,2010,66(2):84-92.
    [11]王天,翁兴中,张俊,等.干湿循环条件下复合固化砂土抗压强度试验研究[J].铁道科学与工程学报,2017,14(4):721-729.
    [12] Kampala A,Horpibulsuk S,Prongmanee N.Influence of wet-dry cycles on compressive strength of calcium carbide residue-fly ash stabilized clay[J].Journal of Materials in Civil Engineering,2014,26(4):633-643.
    [13] Aldaood A,Bouasker M,Al-Mukhtar M.Impact of wetting-drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils[J].Engineering Geology,2014,174(1):11-21.
    [14]郑军,阎长虹,夏文俊,等.干湿循环对新型固化土承载强度影响的试验研究[J].岩石力学与工程学报,2009,28(S1):3051-3056.
    [15]程佳明,王银梅,苗世超,等.固化黄土的干湿循环特性研究[J].工程地质学报,2014,22(2):226-232.
    [16]苏涛,张兴昌.EN-1对砒砂岩固化土坡面径流水动力学特征的影响[J].农业机械学报,2011,42(11):68-75.
    [17]梁止水,吴智仁,杨才千,等.基于W-OH的砒砂岩抗蚀促生机理研究[J].水利学报,2016,47(9):1160-1166.
    [18]梁止水,吴智仁,杨才千,等.砒砂岩固结体防水抗蚀及紫外耐久性能研究[J].人民黄河,2016,38(6):46-48.
    [19]梁止水,杨才千,吴智仁.W-OH与砒砂岩固结体力学性能研究[J].人民黄河,2016,38(6):30-34.
    [20] Goh G S,Rahardjo H,Choon L E.Shear strength equations for unsaturated soil under drying and wetting[J].Journal of Geotechnical and Geoenvironmental Engineering,2010,136(4):594-606.
    [21] American Society for Testing and Materials.Standard Test Methods for Wetting and Drying Compacted SoilCement Mixtures[M].West Conshohocken:ASTM,USA,ASTMD,2004:559-03.
    [22]杨同,徐川,王宝学,等.岩土三轴试验中的黏聚力与内摩擦角[J].中国矿业,2007,16(12):104-107.
    [23]何利军,孔令伟.土的应力—应变关系的一种描述模式[J].工程地质学报,2010,18(6):900-905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700