用户名: 密码: 验证码:
荷载与水共同作用对红砂岩蠕变特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Creep Behaviours of Red Sandstone Under Combined Action of Load and Water Environment
  • 作者:于超云 ; 唐世斌 ; 唐春安
  • 英文作者:YU Chaoyun;TANG Shibin;TANG Chunan;State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology;
  • 关键词:蠕变试验 ; 水岩作用 ; 应力水平 ; 稳态应变率 ; 长期强度
  • 英文关键词:creep test;;water-rock interaction;;stress level;;steady state strain rate;;long-term strength
  • 中文刊名:FSJS
  • 英文刊名:Journal of Water Resources and Architectural Engineering
  • 机构:大连理工大学海岸与近海工程国家重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:水利与建筑工程学报
  • 年:2019
  • 期:v.17;No.83
  • 基金:国家自然科学基金项目(51627804)
  • 语种:中文;
  • 页:FSJS201901004
  • 页数:6
  • CN:01
  • ISSN:61-1404/TV
  • 分类号:27-32
摘要
在岩体工程中,岩石往往受到荷载和水的共同作用。为了研究岩石在荷载和水共同作用下的蠕变力学性质,将红砂岩试件浸没在水中并施加不同应力水平,进行单轴压缩蠕变试验。通过比较浸水试件和表面密封的饱和及干燥试件的蠕变力学参数,研究了荷载与水共同作用对红砂岩蠕变特性的影响。结果表明,浸水试件的长期强度最小,饱和试件次之,干燥试件最大;而且浸水试件稳态应变率最大,饱和试件次之,干燥试件最小。从损伤力学及裂纹扩展的角度来看,环境中的水分持续运移到由于蠕变变形产生的新裂隙中,加剧了水对岩石的物理力学作用是导致浸水试件的蠕变特性更加显著的原因。试验结果对岩体工程的监测及稳定性分析具有一定的指导意义。当对岩体工程进行稳定性计算分析时,建议依据荷载与水共同作用条件下的试验结果选取岩石力学参数。
        In rock engineering, rocks are often subjected to the load and water environment. In order to analyse the creep mechanical properties of rock under the combined action of load and water, red sandstone specimens were immersed in water and subjected to different stress levels for uniaxial compression creep test. The effects of load and water on the creep characteristics of red sandstone were analysed by comparing the creep mechanical parameters of submerged specimens to saturated and dry specimens. Results show that the long-term strength of submerged specimen is the smallest, followed by saturated specimens, and that of dry specimens is the highest. Moreover, the steady-state strain rate of submerged specimen is the highest, followed by that of saturated specimens, and that of dry specimens is the smallest. From the point of view of damage mechanics and crack propagation, the reason that the creep characteristics of submerged specimen are more significant is that the water in the environment is continuously transported into the new fractures caused by creep deformation, which further intensifies the physical and mechanical effect of water on the rock. The presented experimental results are beneficial for monitoring and estimating the long-term stability and safety of rock engineering. When the stability analysis of rock mass engineering is carried out, it is suggested to choose rock mechanics parameters obtained by the test under the combined action of load and water.
引文
[1] 刘才华,陈从新,冯夏庭,等.地下水对库岸边坡稳定性的影响[J].岩土力学,2005,26(3):419-422.
    [2] 刘新荣,傅晏,王永新,等.水-岩相互作用对库岸边坡稳定的影响研究[J].岩土力学,2009,30(3):613-616.
    [3] 邓华锋,李建林.库水位变化对库岸边坡变形稳定的影响机理研究[J].水利学报,2014,45(S2):45-51.
    [4] Bukowski P. Determining of safety pillars in the vicinity of water reservoirs in mine workings within abandoned mines in the Upper Silesian Coal Basin (USCB)[J]. Journal of Mining Science, 2010,46(3):298-310.
    [5] Genis M, Aydan ?. Assessment of Dynamic Response and Stability of an Abandoned Room and Pillar underground Lignite Mine[C]//The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, 2008:3899-3906.
    [6] 田佳.深埋软岩供水隧洞蠕变特性研究进展[J].水利与建筑工程学报,2017,15(4):182-189.
    [7] Lajtai E Z, Schmidtke R H, Bielus L P. The effect of water on the time-dependent deformation and fracture of a granite[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1987,24(4):247-255.
    [8] Kranz R L. Crack growth and development during creep of Barre granite[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1979,16(1):23-35.
    [9] 朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [10] 黄小兰,杨春和,刘建军,等.不同含水情况下的泥岩蠕变试验及其对油田套损影响研究[J].岩石力学与工程学报,2008,27(S2):3477-3482.
    [11] 刘雄.岩石流变学概论[M].北京:地质出版社,1994:19-21.
    [12] 许腾,任思玉,樊成,等.基于Norton方程的岩石蠕变损伤曲线的测定[J].水利与建筑工程学报,2017,15(2):37-42.
    [13] 蔡美峰.岩石力学与工程.第2版[M].北京:科学出版社,2013:217-219.
    [14] Scholz C H. Mechanism of creep in brittle rock[J]. Journal of Geophysical Research, 1968,73(10):3295-3302.
    [15] Kranz R L. Crack growth and development during creep of Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979,16(1):23-35.
    [16] Brandt N, Heap M J, Meredith P G, et al. Time-dependent cracking and brittle creep in crustal rocks: A review[J]. Journal of Structural Geology, 2013,52(5):17-43.
    [17] Heap M J, Baud P, Meredith P G, et al. Time-dependent brittle creep in Darley Dale sandstone[J]. Journal of Geophysical Research Solid Earth, 2009,114(B7):1-22.
    [18] Liu X, Tang C, Li L, et al. Microseismic monitoring and stability analysis of the right bank slope at Dagangshan hydropower station after the initial impoundment[J]. International Journal of Rock Mechanics & Mining Sciences, 2018,108:128-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700