用户名: 密码: 验证码:
南大西洋深海热液区可培养硫氧化微生物多样性及其硫氧化特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic
  • 作者:徐鈜绣 ; 姜丽晶 ; 李少能 ; 钟添华 ; 赖其良 ; 邵宗泽
  • 英文作者:Hongxiu Xu;Lijing Jiang;Shaoneng Li;Tianhua Zhong;Qiliang Lai;Zongze Shao;Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography,State Oceanic Administration;
  • 关键词:深海热液区 ; 硫氧化 ; 多样性 ; 硫氧化特性
  • 英文关键词:deep-sea hydrothermal environment;;sulfur-oxidizing bacteria;;diversity;;sulfur-oxidizing charactenitics
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:国家海洋局第三海洋研究所海洋生物遗传资源重点实验室;
  • 出版日期:2015-06-11 10:02
  • 出版单位:微生物学报
  • 年:2016
  • 期:v.56;No.309
  • 基金:国家“973计划”(2012CB417300);; 中国大洋专项(DY125-15-R-01);; 国家微生物资源平台项目(NIMR-2014-9)~~
  • 语种:中文;
  • 页:WSXB201601010
  • 页数:13
  • CN:01
  • ISSN:11-1995/Q
  • 分类号:94-106
摘要
【目的】探索南大西洋热液环境中的硫氧化细菌多样性并研究其硫氧化特性。【方法】通过富集培养和分离纯化获得硫氧化细菌,利用变性梯度凝胶电泳(DGGE)分析富集菌群组成结构,采用离子色谱法对获得的硫氧化细菌硫氧化特性进行检测。【结果】从南大西洋深海环境样品中共分离到48株菌,分属于alpha-Proteobacteria(28株,58.3%)、Actinobacteria(11株,22.9%)和gama-Proteobacteria(9株,18.8%)共3个门,其中Thalassospira、Martelella和Microbacterium为优势属。DGGE结果表明深海热液环境样品中微生物多样性丰富且不同站位存在差异。硫氧化特性研究结果表明,约60%的分离菌株具有硫氧化能力,可以氧化S_2O_3~(2–)生成SO_4~(2–)。获得一株硫氧化能力较强的潜在新种L6M1-5,在实验条件下可高效氧化S_2O_3~(2–),最大氧化速率可达0.56 mmol/(L·h)。【结论】南大西洋深海热液环境中可培养硫氧化细菌多样性丰富,为研究热液环境中的硫循环过程提供了实验材料和理论参考;同时高效硫氧化菌的获得,为工业化含硫废水的处理提供了良好的菌种资源。
        [Objective] To investigate the diversity of culturable sulfur-oxidizing bacteria in hydrothermal vent environments of the South Atlantic, and analyze their characteristics of sulfur oxidation. [Methods] We enriched and isolated sulfur-oxidizing bacteria from hydrothermal vent samples collected from the South Atlantic. The microbial diversity in enrichment cultures was analyzed using the Denatural Gradient Gel Electrophoresis method. Sulfur-oxidizing characteristics of the isolates was further studied by using ion chromatography. [Results] A total of 48 isolates were obtained from the deep-sea hydrothermal vent samples, which belonged to 23 genera and mainly grouped into alphaProteobacteria(58.3%), Actinobacteria(22.9%) and gama-Proteobacteria(18.8%). Among them, the genus Thalassospira,Martelella and Microbacterium were dominant. About 60% of the isolates exibited sulfur-oxidizing ability and strain L6M1-5 had a higher sulfur oxidation rate by comparison analysis. [Conclusion] The diversity of sulfur-oxidizing bacteria in hydrothermal environments of the South Atlantic was reported for the first time based on culture-dependent methods. The result will help understand the biogechemical process of sulfur compounds in the deep-sea hydrothermal environments.
引文
[1]Kvenvolden KA,Weliky K,Nelson H,Des Marais DJSubmarine seep of carbon dioxide in Norton Sound,Alaska Science,1979,205(4412):1264-1266.
    [2]Yamamoto M,Takai K.Sulfur metabolisms in epsilon-and gamma-Proteobacteria in deep-sea hydrothermal fields Frontiers in Microbiology,2011,2:192.
    [3]Dubilier N,Bergin C,Lott C.Symbiotic diversity in marine animals:the art of harnessing chemosynthesis.Nature Review Microbiology,2008,6(10):725-740.
    [4]Amend JP,Mc Collom TM,Hentscher M,Bach W.Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types Geochimica et Cosmochimica Acta,2011,75(19):5736-5748.
    [5]Hügler M,G?rtner A,Imhoff JF.Functional genes as marker for sulfur cycling and CO2 fixation in microbial communities o hydrothermal vents of the Logatchev field.FEMS Microbiology Ecology,2010,73(3):526-537.
    [6]Moran MA,González JM,Kiene RP.Linking a bacterial taxon to sulfur cycling in the sea:studies of the marine Roseobacte group.Geomicrobiology Journal,2003,20(4):375-388.
    [7]Akerman NH,Butterfield DA,Huber JA.Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal ven fluids.Frontiers in Microbiology,2013,4:185.
    [8]Sievert SM,Hügler M,Taylor CD,Wirsen CO.Sulfu oxidation at deep-sea hydrothermal vents//Dahl C,Friedrich CG.Microbial Sulfur Metabolism.First edition.Berlin Heidelberg,German:Springer,2008.
    [9]Ghosh W,Dam B.Biochemistry and molecular biology o lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea.FEMS Microbiology Reviews2009,33(6):999-1043.
    [10]谢燕荣.东太平洋热液烟囱硫化物中重金属抗性微生物及南大西洋跨洋中脊表层海水中微生物种群结构分析.厦门大学硕士学位论文,2014.
    [11]Teske A,Brinkhoff T,Muyzer G,Moser DP,Rethmeier JJannasch HW.Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents.Applied and Environmental Microbiology,2000,66(8):3125-3133.
    [12]Liu Y,Lai QL,Du J,Xu HX,Jiang LJ,Shao ZZ.Thioclava indica sp.nov.,isolated from surface seawater of the Indian Ocean.Antonie Van Leeuwenhoek,2015,107(1):297-304.
    [13]Liu CL,Shao ZZ.Alcanivorax dieselolei sp.nov.,a nove alkane-degrading bacterium isolated from sea water and deep sea sediment.International Journal of Systematic and Evolutionary Microbiology,2005,55(3):1181-1186.
    [14]Kim OS,Cho YJ,Lee K,Yoon SH,Kim M,Na H,Park SCJeon YS,Lee JH,Yi H,Won S,Chun J.Introducing Ez Taxon e:a prokaryotic 16S r RNA gene sequence database with phylotypes that represent uncultured species.Internationa Journal of Systematic and Evolutionary Microbiology,201262(Pt 3):716-721.
    [15]Tamura K,Peterson D,Peterson N,Stecher G,Nei M,Kuma S.MEGA 5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods.Molecular Biology and Evolution,201128(10):2731-2739.
    [16]赖其良.西南印度洋中脊深海水体PAHs降解菌的多样性分析.国家海洋局第三海洋研究所硕士学位论文,2007.
    [17]Javor BJ,Wilmot DB,Vetter RD.p H-dependent metabolism o thiosulfate and sulfur globules in the chemolithotrophic marine bacterium Thiomicrospira crunogena.Archives o Microbiology,1990,154(3):231-238.
    [18]Jiang LJ,Xu HX,Shao ZZ,Long MN.Defluviimonas indica sp.nov.,a marine bacterium isolated from a deep-sea hydrothermal vent environment.International Journal o Systematic and Evolutionary Microbiology,2014,64(Pt 6)2084-2088.
    [19]Lai QL,Li SN,Xu HX,Jiang LJ,Zhang RQ,Shao ZZThioclava atlantica sp.nov.,isolated from deep sea sediment o the Atlantic Ocean.Antonie Van Leeuwenhoek,2014,106(5)919-925.
    [20]Lenk S,Moraru C,Hahnke S,Arnds J,Richter M,Kube MReinhardt R,Brinkhoff T,Harder J,Amann R,Muβmann MRoseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes.The ISME Journal,2012,6(12):2178-2187.
    [21]Luo JH,Lv DZ,Pan YB.Determination of chlorine,sulfite sulfate contents in vegetables and fruits by ion chromatography Chinese Journal of Tropical Crops,2011,32(6):1176-1180(in Chinese)罗金辉,吕岱竹,潘永波.离子色谱法测定蔬菜水果中氯离子、亚硫酸盐、硫酸盐含量.热带作物学报,2011,32(6)1176-1180.
    [22]Yuan Y,Zhang N,Lu ZQ,Ye HM.Mutual influence with othe with other anionic while analysing sulfite by ion chromatography Chinese Journal of Analysis Laboratory,2010,29(S1):281-284.(in Chinese)袁悦,张宁,卢造权,叶红梅.离子色谱法分析亚硫酸盐时与其它阴离子的相互影响.分析试验室,2010,29(增刊)281-284.
    [23]Gürtler V,Stanisich VA.New approaches to typing and identification of bacteria using the 16s-23s r DNA space region.Microbiology,1996,142(1):3-16.
    [24]Tabacchioni S,Chiarini L,Bevivino A,Cantale C,Dalmastri CBias caused by using different isolation media for assessing the genetic diversity of a natural microbial population.Microbia Ecology,2000,40(3):169-176.
    [25]Meyer B,Imhoff JF,Kuever J.Molecular analysis of the distribution and phylogeny of the sox B gene among sulfur oxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system.Environmental Microbiology,2007,9(12):2957-2977.
    [26]Meyer JL,Akerman NH,Proskurowski G,Huber JA.Microbiological characterization of post-eruption"snowblower"vents at Axia Seamount,Juan de Fuca Ridge.Frontiers in Microbiology2013,4:153.
    [27]Friedrich CG,Rother D,Bardischewsky F,Quentmeier AFischer J.Oxidation of reduced inorganic sulfur compounds by bacteria:emergence of a common mechanism?Applied and Environmental Microbiology,2001,67(7):2873-2882.
    [28]Sorokin DY,Tourova TP,Muyzer G.Citreicella thiooxidan gen.nov.,sp.nov.,a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea.Systematic and Applied Microbiology,2005,28(8):679-687.
    [29]Petri R,Podgorsek L,Imhoff JF.Phylogeny and distribution o the sox B gene among thiosulfate-oxidizing bacteria.FEMSMicrobiology Letters,2001,197(2):171-178.
    [30]Sorokin DY,Tourova TP,Spiridonova EM,Rainey FAMuyzer G.Thioclava pacifica gen.nov.,sp.nov.,a nove facultatively autotrophic,marine,sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area.Internationa Journal of Systematic and Evolutionary Microbiology,200555(3):1069-1075.
    [31]Takai K,Hirayama H,Nakagawa T,Suzuki Y,Nealson KHHorikoshi K.Thiomicrospira thermophila sp.nov.,a nove microaerobic,thermotolerant,sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTOcaldera,Mariana Arc,Western Pacific.International Journal o Systematic and Evolutionary Microbiology,2004,54(6)2325-2333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700