用户名: 密码: 验证码:
新疆干旱区季节性积雪中黑碳气溶胶研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Black carbon in seasonal snow across northern of Xinjiang
  • 作者:陈文倩 ; 丁建丽 ; 张喆 ; 王鑫 ; 浦伟 ; 刘博华 ; 曹肖奕
  • 英文作者:CHEN Wen-qian;DING Jian-li;ZHANG Zhe;WANG Xin;PU Wei;LIU Bo-hua;CAO Xiao-yi;Xinjiang Common University Key Lab of Smart City and Environmental Stimulation, Xinjiang University;Key Laboratory of Oasis Ecology Ministry of Education;Key Laboratory for Semi-Arid Climate Change, Ministry of Education, College of Atmospheric Sciences, Lanzhou University;
  • 关键词:新疆干旱区 ; 季节性积雪 ; 黑碳 ; 后向轨迹模拟
  • 英文关键词:arid area of Xinjiang;;seasonal snow cover;;black carbon;;back trajectory simulation
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:新疆大学资源与环境科学学院智慧城市与环境建模自治区普通高校重点实验室;绿洲生态教育部重点实验室;兰州大学大气科学学院半干旱气候变化教育部重点实验室;
  • 出版日期:2019-01-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(41771470);; 新疆自治区重点实验室专项基金资助项目(2016D03001);; 自治区科技支疆项目(201591101);; 新疆大学优秀博士生科技创新项目(XJUBSCX-2016014)
  • 语种:中文;
  • 页:ZGHJ201901010
  • 页数:9
  • CN:01
  • ISSN:11-2201/X
  • 分类号:85-93
摘要
利用中分辨率成像光谱仪(MODIS)遥感数据与2018年1月野外实测的28个雪样,综合分析新疆干旱区季节性积雪中黑碳气溶胶浓度(BC)分布特征与气溶胶光学厚度(AOD)等.利用HYSPLIT-4后向轨迹模式获取釆样点逐日的后向轨迹,分析BC的可能传输路径.结果表明:(1)北疆地区积雪覆盖率从11月份到次年1月份逐渐增加,冬季积雪覆盖率可达到97.5%,冬季AOD平均值为0.173,高值出现在天山北坡经济带区域与东部区域(0.2~0.35),低值区域主要在阿勒泰地区(0.06~0.1).(2)表层积雪的BC浓度范围为44.08~1949.9ng/g,平均值为536.71ng/g,BC浓度分布特征为:天山北坡经济带BC浓度(913.24ng/g)>艾比湖东南部区域(816.56ng/g)>艾比湖北部区域(421.94ng/g)>艾比湖西部区域(407.97ng/g)>克拉玛依区域(162.28ng/g)>古尔班通古特沙漠区域(124.89ng/g)>阿勒泰地区(98.51ng/g).随着海拔升高积雪中BC浓度有微弱上升,相关系数R~2为0.03,随着纬度增加积雪中BC浓度均呈下降趋势,R~2为0.255.(3)艾比湖流域后向轨迹中以博乐-精河-艾比湖向东北方向输送路径为主,对采样点的BC浓度影响较大;天山北坡经济带区域主要以精河-石河子-乌鲁木齐的天山北坡城市群向东北输送路径为主,局地污染较为严重;阿勒泰地区的后向轨迹以俄罗斯南部-哈萨克斯坦北部-东哈萨克斯坦输送路径为主,局地污染贡献较少;克拉玛依区域主要来自哈萨克斯坦东部和西部向东方向的输送,局地污染不明显;沙漠区域主要以西南方向输送路径为主.
        This paper analysed seasonal snow cover, AOD, BC(black carbon) concentration with MODIS data and samples data measured in January 2018 in the field, and obtained the potential BC transmission path through the HYSPLIT-4 to get the day-to-day back trajectory of every sample. The results showed that:(1) Snow cover in northern Xinjiang reached 97.5%, which gradually increased from November to January. The average AOD in northern Xinjiang was 0.173, high values appeared in the northern slope economic zone of the Tianshan Mountains and eastern part of the Tianshan Mountains(0.2~0.35), however, the low was mainly distributed in Altay(0.06~0.1)(2)The BC concentrations in the surface snow ranged from 44.08 to 1949.9ng/g, with an average of 536.71ng/g. The BC concentration distribution in northern Xinjiang was the northern slope of the Tianshan Mountains( 913.24ng/g)> Southeastern of Ebinur Lake(816.56ng/g)> Northern of Ebinur Lake(421.94ng/g)> Western of Ebinur Lake(407.97ng/g)> Area of Karamay(162.28ng/g))> Gurbantunggut Desert Region(124.89ng/g)> Altay Region(98.51ng/g). The concentration of BC in snow in northern Xinjiang increased slightly with higher altitude, R~2 was 0.03. With the increase of latitude, the concentration of BC in snow had a decreasing trend, R~2 was 0.255.(3)The trajectory cluster analysis of the samples showed that the backward trajectory of the Ebinur Lake basin dominated by the northeastern direction of the Bole-Jinghe-Ebinur Lake, and this trajectory had a greater impact on the concentration of BC in snow; the economic zone on the northern slope of the Tianshan Mountains dominated by the northeastern cities of Jinghe-Shihezi-Urumqi on the northern slope of the Tianshan Mountains, the result showed that local pollution was serious. The backward trajectory of the Altay region dominated by the Russian-Northern Kazakhstan-East Kazakhstan transport path with less contribution from local pollution; the Karamay region was mainly transported from easten of Kazakhstan, it's local pollution was not obvious. And the desert area dominated by the southwestern direction.
引文
[1]陈文倩,丁建丽,马勇刚,等.亚洲中部干旱区积雪时空变异遥感分析[J].水科学进展,2018,29(1):11-19.Chen W Q,Ding J L,Ma Y G,et al.Spatial-temproal variability of snow cover in arid regions of Central Asia[J].Advances in Water Science,2018,29(1):11-19.
    [2]陈霖,张镭,张磊,等.半干旱地区黑碳气溶胶和含碳气体特征及来源[J].中国环境科学,2012,32(08):1345-1352.Chen L,Zhang L,Zhang L,et al.Characteristics of black carbon aerosol and carbonaceous gases and their emission sources in semi-arid region[J].China Environmental Science,2012,32(8):1345-1352.
    [3]Wang X,Xu B,Ming J.An overview of the studies on black carbon and mineral dust deposition in snow and ice cores in East Asia[J].Journal of Meteorological Research,2014,28(3):354-370.
    [4]Andreae M O,Ramanathan V.Climate's Dark Forcings[J].Science,2013,340(6130):280-281.
    [5]Wang X,Pu W,Ren Y,et al.Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble lightabsorbing particles during 2014 Chinese survey[J].Atmospheric Chemistry&Physics,2017,17(1-3):2279-2296.
    [6]Bond T C,Doherty S J,Fahey D W,et al.Bounding the role of black carbon in the climate system:A scientific assessment[J].Journal of Geophysical Research Atmospheres,2013,118(11):5380-5552.
    [7]Painter T H,Seidel F C,Bryant A C,et al.Imaging spectroscopy of albedo and radiative forcing by light-absorbing impurities in mountain snow[J].Journal of Geophysical Research Atmospheres,2013,118(18):9511-9523.
    [8]Pu,W,Wang,X,Wei,H L,et al.Properties of black carbon and other insoluble light-absorbing particles in seasonal snow of northwestern China[J].Cryosphere,2017,11(3):1-59.
    [9]Zhang Y,Kang S,Cong Z,et al.Light‐absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau[J].Journal of Geophysical Research Atmospheres,2017,122(13):6915-6933.
    [10]Hadley O L,Kirchstetter T W.Black-carbon reduction of snow albedo[J].Nature Climate Change,2012,2(4):437-440.
    [11]Lin G,Penner J E,Flanner M G,et al.Radiative forcing of organic aerosol in the atmosphere and on snow:Effects of SOA and brown carbon[J].Journal of Geophysical Research Atmospheres,2014,119(12):7453-7476.
    [12]Hansen J,Sato M,Ruedy R,et al.Efficacy of climate forcings[J].Journal of Geophysical Research Atmospheres,2005,110(D18):2571-2592.
    [13]Pu W.Size Distribution and Optical Properties of Particulate Matter(PM10)and Black Carbon(BC)during Dust Storms and Local Air Pollution Events across a Loess Plateau Site[J].Aerosol&Air Quality Research,2015,15(6S):2212-2224.
    [14]Zhao C,Z Hu,Y Qian,et al.Simulating black carbon and dust and their radiative forcing in seasonal snow:a case study over North China with field campaign measurements[J].Atmospheric Chemistry and Physics,2014(14):11475-11491.
    [15]Clarke A D,Noone K J.Soot in the Arctic snowpack:a cause for perturbations in radiative transfer[J].Atmospheric Environment,2007,19(12):2045-2053.
    [16]Qian Y,Jr W I G,Leung L R,et al.Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations[J].Journal of Geophysical Research Atmospheres,2009,114(D3):
    [17]史晋森,孙乃秀,叶浩,等.青海高原季节性降雪中的黑碳气溶胶[J].中国环境科学,2014,34(10):2472-2478.Shi J S,Sun N X,Ye H,et al.Black carbon in seasonal snow across Qinghai Plateau[J].China Environmental Science,2014,34(10):2472-2478.
    [18]Zhang Y,Kang S,Sprenger M,et al.Black carbon and mineral dust in snow cover on the Tibetan Plateau[J].Cryosphere,2018,12(2):413-431.
    [19]Ye H,Zhang R,Shi J,et al.Black carbon in seasonal snow across northern Xinjiang in northwestern China[J].Environmental Research Letters,2012,7(4):044-002.
    [20]李燕军,张镭,曹贤洁,等.兰州城市和远郊区黑碳气溶胶浓度特征[J].中国环境科学,2014,34(6):1397-1403.Li Y J,Zhang L,Cao X J,et al.Property of black carbon concentration over urban and suburban of Lanzhou[J].China Environmental Science,2014,34(6):1397-1403.
    [21]胡汝骥,樊自立,王亚俊,等.近50a新疆气候变化对环境影响评估[J].干旱区地理,2001,24(2):97-103.Hu R J,Fang Z L,Wang Y J,et al.Assessment about the impact of climate change on environment in Xinjiang since recent 50yeas[J].Arid Land Geography,2001,24(2):97-103.
    [22]陶江,杨德刚.天山北坡经济带可持续发展能力的综合评价[J].干旱区地理,2005,28(6):874-878.Tao J,Yang D G.Synthesized Evaluation on the Sustainable Development Capacity of the Economic Belt on the Northern Slope of the Tianshan Mountains[J].Arid Land Geography,2005,28(6):874-878.
    [23]雷小牛,周迎,朱奕鹏.关于对天山北坡经济带水资源优化配置的建议[J].干旱区地理,2010,33(6):968-970.
    [24]Lei X N,Zhou Y,Zhu Y P.Suggestions for optimizing allocation of water resources of the Northern Tianshan Economic Zone[J].Arid Land Geography,2010,33(6):968-970.
    [25]Doherty S J.Black carbon and other light-absorbing impurities in snow across Northern China[J].Journal of Geophysical Research Atmospheres,2013,118(3):1471-1492.
    [26]Gabbi J,Huss M,Bauder A,et al.The impact of Saharan dust and black carbon on albedo and long-term glacier mass balance[J].Cryosphere Discussions,2015,9(1):1385-1400.
    [27]张喆,丁建丽,王瑾杰.中亚沙尘气溶胶时空分布特征及潜在扩散特性分析[J].地理学报,2017,72(3):507-520.Zhang Z,Ding J L,Wang J J.Spatio-temporal variations and potential diffusion characteristics of dust aerosol originating from Central Asia[J].Acta Geographica Sinica,2017,72(3):507-520.
    [28]Sprenger M,Wernli H.The LAGRANTO Lagrangian analysis tool-version 2.0[J].Geoscientific Model Development,2015,8(8):1893-1943.
    [29]Skiles M K,Painter T H,Belnap J,et al.Regional variability in dust on snow processes and impacts in the Upper Colorado River Basin[J].Hydrological Processes,2016,29(26):5397-5413.
    [30]明镜,效存德,杜振彩,等.中国西部雪冰中的黑碳及其辐射强迫[J].气候变化研究进展,2009,5(6):328-335.MING J,XIAO C D,DU Z C,et al.Black Carbon in Snow/Ice of West China and Its Radiative Forcing.Climate Change Research,2009,5(6):328-335.
    [31]Huang J,Fu Q,Zhang W,et al.Dust and Black Carbon in Seasonal Snow Across Northern China[J].Bulletin of the American Meteorological Society,2011,92(2):175-181.
    [32]Flanner,M.G,Zender,C.S,Hess,P.G,et al.Springtime warming and reduced snow cover from carbonaceous particles[J].Atmospheric Chemistry and Physics,2009,9(7):2481-2497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700