用户名: 密码: 验证码:
利用抗性筛选和基因组重排技术选育ε-聚赖氨酸高产菌株
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improving ε-poly-L-lysine productivity in Streptomyces albulus M-Z18 through antibiotic resistance screening and genome shuffling technology
  • 作者:赵俊杰 ; 王开方 ; 陈旭升 ; 毛忠
  • 英文作者:ZHAO Junjie;WANG Kaifang;CHEN Xusheng;MAO Zhonggui;Key Lab of Industrial Biotechnology,Ministry of Education,School of Biotechnology,Jiangnan University;
  • 关键词:多肽 ; ε-聚赖氨酸 ; 基因组重排 ; 抗性筛选 ; 巴龙霉素
  • 英文关键词:polypeptide;;ε-poly-L-lysine;;genome shuffling;;resistance screening;;paromomycin
  • 中文刊名:ZYZZ
  • 英文刊名:China Oils and Fats
  • 机构:江南大学生物工程学院工业生物技术教育部重点实验室;
  • 出版日期:2019-01-17 15:15
  • 出版单位:中国油脂
  • 年:2019
  • 期:v.44;No.335
  • 基金:江苏省产学研合作前瞻性联合研究项目(BY2016022-25)
  • 语种:中文;
  • 页:ZYZZ201901017
  • 页数:6
  • CN:01
  • ISSN:61-1099/TS
  • 分类号:81-86
摘要
聚赖氨酸产生菌Streptomyces albulus M-Z18的摇瓶产量较低,仅为1. 60 g/L。利用抗性筛选和基因组重排技术对S. albulus M-Z18进行菌种选育以获得高产ε-聚赖氨酸菌株。通过引入巴龙霉素抗性到S. albulus M-Z18中,获得两株性状优良的菌株S. albulus P-1和S. albulusP-2,ε-聚赖氨酸产量分别为2. 20 g/L和2. 16 g/L,单位菌体ε-聚赖氨酸合成能力分别为0. 41g/g和0. 39 g/g,作为基因组重排的亲本菌株;运用正交实验优化实验条件,最终获得一株高产ε-聚赖氨酸的融合子S. albulus G12,产量为2. 73 g/L,相比M-Z18提高了70. 63%。
        The ε-poly-L-lysine( ε-PL) producing strain Streptomyces albulus M-Z18 produced only 1. 60 g/L in shake flasks. S. albulus M-Z18 was bred by resistance screening and genome shuffling technology to get the ε-PL high-productivity strain. The paromomycin resistance was introduced into S. albulus M-Z18,and two strains with excellent traits,S. albulus P-1 and S. albulus P-2,were obtained with ε-PL production of 2. 20 g/L and 2. 16 g/L,respectively. The ε-PL biosynthetic capacity per strain was 0. 41 g/g and 0. 39 g/g,respectively. Using S. albulus P-1 and S. albulus P-2 as the parent strains for genome shuffling,the high-yield fusions were screened using protoplast fusion technology,and finally a fusion with high production of ε-PL was obtained. The ε-PL production of S. albulus G12 was 2. 73 g/L,an increase of 70. 63% compared with M-Z18.
引文
[1]段杉,邓瑞君,吴锦铸,等.ε-聚赖氨酸及其生物合成的研究进展[J].食品科技,2005(4):13-15.
    [2]OCHI K.From microbial differentiation to ribosome engineering[J].Biosci Biotechnol Biochem,2007,71(6):1373-1386.
    [3]TAMEHIRO N,HOSAKA T,XU J,et al.Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus[J].Appl Environ Microbiol,2003,69(11):6412-6417.
    [4]WANG G,INAOKA T,OKAMOTO S,et al.A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction[J].Antimicrob Agents Chemother,2009,53(3):1019-1026.
    [5]ZHANG Y X,PERRY K,VINCI V A,et al.Genome shuffling leads to rapid phenotypic improvement in bacteria[J].Nature,2002,415(6872):644-646.
    [6]徐波,王明蓉,夏永,等.应用基因组重排育种新方法筛选替考拉宁高产菌[J].中国抗生素杂志,2006,31(4):237-242.
    [7]HOPWOOD D A,BIBB M J,CHATER K F,et al.Genetic manipulation of streptomyces:a laboratory manual[J].JCell Biol,1985,56(3):388-399.
    [8]LIX Y,LIU R J,LI J,et al.Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma(ARTP)and diethyl sulfate treatments[J].Bioresour Technol,2015,177:134-140.
    [9]MACNEIL D J,KLAPKO L M.Transformation of Streptomyces avermitilis by plasmid DNA[J].J Ind Microbiol,1987,2(4):209-218.
    [10]詹萍,苏龙,周乃东.红酵母原生质体制备和再生条件研究[J].安徽农业科学,2010,38(3):1154-1155.
    [11]ITZHAKI R F.Colorimetric method for estimating polylysine and polyarginine[J].Anal Biochem,1972,50(2):569-574.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700