用户名: 密码: 验证码:
基于透过式低相干光学干涉测量透镜中心厚度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement of Lens-Center Thickness Based on Low-Coherence Interference with Transmitted Illumination
  • 作者:刘经佑 ; 雷枫
  • 英文作者:Liu Jingyou;Lei Feng;School of Physics and Electronic Electrical Engineering,Huaiyin Normal University;Key Laboratory of Huai′an′s Micro-Nano Optical Imaging;
  • 关键词:测量 ; 透镜中心厚度 ; 低相干光干涉 ; 楔形棱镜组 ; 光程补偿
  • 英文关键词:measurement;;lens-center thickness;;low-coherence interference;;wedge prism pair;;optical path compensation
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:淮阴师范学院物理与电子电气工程学院;淮安市微纳光学成像重点实验室;
  • 出版日期:2019-01-25 13:01
  • 出版单位:激光与光电子学进展
  • 年:2019
  • 期:v.56;No.647
  • 基金:淮安市科技局重点实验室项目(HAP201604)
  • 语种:中文;
  • 页:JGDJ201912015
  • 页数:9
  • CN:12
  • ISSN:31-1690/TN
  • 分类号:116-124
摘要
基于透过式低相干光学干涉系统,提出了一种精密调节光程的方法,以测量透镜的中心厚度。利用一对楔形棱镜,将接近垂直于光轴方向的低精度直线移动转化为沿光轴方向的高精度直线移动,实现了高精度的光程调节。楔形棱镜的楔角角度决定了光程差的调节精度,楔角角度越小,光程差调节精度越高。使用5°30′的楔角棱镜组和精度为5μm的直线移动装置,实现了光轴方向精度小于0.5μm的移动调节,测量透镜中心厚度的精度在0.9μm以内。所提方法提高了干涉条纹的对比度,可以测量各种类型透镜的中心厚度,也便于扩大测量厚度范围。
        A method for precision-adjustable optical paths is proposed to measure the central thickness of a lens based on low-coherence interference with transmitted illumination.A pair of wedge prisms are used to translate the movement that is nearly perpendicular to the optical axis with low accuracy into movement along the optical axis with high accuracy,and thus the optical path along the optical axis can be precisely adjusted.The accuracy for adjusting the optical-path difference(OPD)is related to the wedge angle.The smaller the wedge angle,the more accurate the adjustable OPD.A pair of prisms with a wedge angle of 5°30′and a linear stage with 5μm accuracy are used to realize the movement along the optical axis with an accuracy below 0.5μm,and the central thickness accuracy of the tested lens is less than 0.9μm.The proposed method is employed to improve the contrast of interference fringes.Moreover,the central thicknesses of lenses with different shapes can be measured by the proposed method and the thickness-measuring scope can be extended easily.
引文
[1] Liang H F,Cai P F. Non-contact measurement method for thickness of optical element[J].Optical Technique,2014,40(6):535-538.梁海锋,蔡沛峰.一种非接触测量光学零件厚度的方法[J].光学技术,2014,40(6):535-538.
    [2] Goncharov A V,Bailón L L,Devaney N M,et al.Optical testing of lens systems with concentric design[J].Proceedings of SPIE,2009,7389:738912.
    [3] Park J B,Lee J G,Lee M K,et al.A glass thickness measuring system using the machine vision method[J]. International Journal of Precision Engineering and Manufacturing,2011,12(5):769-774.
    [4] Zhao W Q,Sun R D,Qiu L R,et al.Lenses axial space ray tracing measurement[J].Optics Express,2010,18(4):3608-3617.
    [5] Wang Y,Qiu L R,Yang J M,et al.Measurement of the refractive index and thickness for lens by confocal technique[J].Optik-International Journal for Light and Electron Optics,2013,124(17):2825-2828.
    [6] Zhao W Q,Shen Y,Qiu L R,et al.Lenses axial space measurement by laser confocal technology[J].Laser&Optoelectronics Progress,2015,52(3):031205.赵维谦,沈阳,邱丽荣,等.激光共焦透镜轴向间隙测量方法[J].激光与光电子学进展,2015,52(3):031205.
    [7] Yao H B,Li L L,Chen M M,et al.Design of measurement system of lens center thickness based on double-side optical confocal technology[J].Laser Technology,2016,40(6):912-915.姚红兵,李丽淋,陈明明,等.双面光学共焦技术的透镜中心厚度测量设计[J].激光技术,2016,40(6):912-915.
    [8] Kunkel M,Schulze J.Noncontact measurement of central lens thickness[J]. Glass Science and Technology,2005,78(5):245-247.
    [9] Qiao Y,Zhang N,Xu X P,et al.Design of lens thickness measurement system based on confocal technology[J]. Chinese Journal of Scientific Instrument,2011,32(7):1635-1641.乔杨,张宁,徐熙平,等.基于共焦法的透镜厚度测量系统设计[J].仪器仪表学报,2011,32(7):1635-1641.
    [10] Lu Y, Xu X P, Shi N,et al. Research on measurement method and apparatus for lens center thickness[J].Journal of Changchun University of Science and Technology(Natural Science Edition),2013,36(3/4):28-31.卢毅,徐熙平,石诺,等.透镜中心厚度测量方法及装置的研究[J].长春理工大学学报(自然科学版),2013,36(3/4):28-31.
    [11] Zhou Y,Guo B H,Li C,et al.Research on spectrum bandwidth of emergent light in lens center thickness measurement system[J]. Laser&Optoelectronics Progress,2015,52(8):081202.周勇,郭帮辉,李灿,等.透镜中心厚度测量系统出射光光谱的研究[J].激光与光电子学进展,2015,52(8):081202.
    [12] Zhou Y,Guo B H,Wang X X,et al.Design of lens central thickness measuring optical system[J].Laser&Optoelectronics Progress,2016,53(3):031201.周勇,郭帮辉,王潇询,等.透镜中心厚度测量系统光学设计[J].激光与光电子学进展,2016,53(3):031201.
    [13] Tan Y D,Zhu K Y,Zhang S L.New method for lens thickness measurement by the frequency-shifted confocal feedback[J]. Optics Communications,2016,380:91-94.
    [14] Shi L B,Qiu L R,Wang Y,et al.Development of lens central thickness measurement system using laser differential confocal microscopy[J].Chinese Journal of Scientific Instrument,2012,33(3):683-688.史立波,邱丽荣,王允,等.激光差动共焦透镜中心厚度测量系统的研制[J].仪器仪表学报,2012,33(3):683-688.
    [15] Langehanenberg P, Ruprecht A, Off D,et al.Highly accurate measurement of lens surface distances within optical assemblies for quality testing[J].Proceedings of SPIE,2013,8844:88444F.
    [16] Stickler D,Langehanenberg P,LüerβB,et al.Optomechanical characterization of large wafer stepper-optics with respect to centering errors,lens distances,and center thicknesses[J].Proceedings of SPIE,2013,8683:86832C.
    [17] Lueerss B,Langehanenberg P.Thickness and air gap measurement of assembled IR objective[J].Proceedings of SPIE,2015,9648:96480C.
    [18] Zilio S C.Simultaneous thickness and group index measurement with a single arm low-coherence interferometer[J].Optics Express,2014,22(22):27392-27397.
    [19] Wang Z B,Shi G H,He Y,et al.Application of opticalcoherencetomographytodistance measurement of optical surface[J]. Optics and Precision Engineering,2012,20(7):1469-1474.王志斌,史国华,何益,等.光学相干层析技术在光学表面间距测量中的应用[J].光学精密工程,2012,20(7):1469-1474.
    [20] Guo B H,Li M,Sun Q.Research of dispersion in measurement of optical lens gap[J]. Laser&Optoelectronics Progress,2014,51(6):061204.郭帮辉,李明,孙强.光学镜面间隔测量中的色散研究[J].激光与光电子学进展,2014,51(6):061204.
    [21] Liu F G,Zha X J,Yang B,et al.Study on the method of measuring the center thickness of the lenses based on low coherence interferometry of optical fiber[J].Applied Laser,2016,36(5):605-610.刘富国,查学军,杨波,等.基于光纤低相干干涉技术的透镜中心厚度测量方法研究[J].应用激光,2016,36(5):605-610.
    [22] Shi Z H,Yang B X,Hu X B,et al.Lens surface distance measurement with large range and high precision based on low coherence interferometry[J].Acta Optica Sinica,2016,36(6):0612001.师中华,杨宝喜,胡小邦,等.基于低相干干涉技术的大量程高精度镜面间距测量[J].光学学报,2016,36(6):0612001.
    [23] Jin C Q,Yang B X,Hu X B,et al.Measurement method of lens central thickness with high precision based on low coherence interferometry[J].Chinese Journal of Lasers,2017,44(6):0604002.金超群,杨宝喜,胡小邦,等.低相干光干涉高精度透镜中心厚度的测量方法[J].中国激光,2017,44(6):0604002.
    [24] Wilhelm R,Courteville A,Garcia F.Dimensional metrology for the fabrication of imaging optics using a high accuracy low coherence interferometer[J].Proceedings of SPIE,2005,5856:469-481.
    [25] Pan L H,Li Z L,Wang X Z,et al.Depth-dependent dispersioncompensationforopticalcoherence tomography[J].Acta Optica Sinica,2017,37(5):0511002.潘柳华,李中梁,王向朝,等.光学相干层析成像随深度变化的色散补偿方法[J].光学学报,2017,37(5):0511002.
    [26] Chang Y,Cui Q F,Piao M X.Optical design of Michelson interferometer based line-field swept source optical coherence tomography system[J].Acta Optica Sinica,2018,38(6):0608002.常颖,崔庆丰,朴明旭.迈克耳孙扫频线聚焦光学相干层析系统的光学设计[J].光学学报,2018,38(6):0608002.
    [27] Wang X, Li Z L, Nan N,et al. A spectral calibration method in optical coherence tomography based on interference signal with fixed optical path difference[J].Chinese Journal of Lasers,2018,45(6):0607005.王瑄,李中梁,南楠,等.一种基于固定光程差干涉信号的光学相干层析成像光谱标定方法[J].中国激光,2018,45(6):0607005.
    [28] Zhang Y,Gao W R,Zhang L L,et al.Handheld optical coherence tomography based on logarithmic compensation and motion threshold[J].Chinese Journal of Lasers,2018,45(11):1107002.张越,高万荣,张兰兰,等.基于对数补偿和动态阈值的手持式光学相干层析成像方法[J].中国激光,2018,45(11):1107002.
    [29] Li P,Yang S S,Ding Z H,et al.Research progress in Fourier domain optical coherence tomography[J].Chinese Journal of Lasers,2018,45(2):0207011.李培,杨姗姗,丁志华,等.傅里叶域光学相干层析成像技术的研究进展[J].中国激光,2018,45(2):0207011.
    [30] Tan Z H, Feng Y P, Wang Z. Advances in measurement of optical central thickness by low coherence interferometry[J].Imaging Science and Photochemistry,2016,34(1):5-14.檀泽浩,冯云鹏,王钟.基于低相干干涉的透镜厚度测量及生物影像研究进展[J].影像科学与光化学,2016,34(1):5-14.
    [31] Yang Z W.Optical measurements[M].Beijing:Beijing Institute of Technology Press,1995:7-12.杨志文.光学测量[M].北京:北京理工大学出版社,1995:7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700