用户名: 密码: 验证码:
阻垢剂PASP和DTPMP-Na_7作为正渗透汲取液的比较研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative study on scale inhibitors PASP and DTPMP-Na_7 as draw solution of forward osmosis process
  • 作者:钱宇 ; 张忠国 ; 秦振平 ; 单悦 ; 何沛然
  • 英文作者:QIAN Yu;ZHANG Zhongguo;QIN Zhenping;SHAN Yue;HE Peiran;Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology;Environmental Protection Research Institute of Light Industry;Key Laboratory of Energy-Water-Conservation and Wastewater Reuse,China National Light Industry;
  • 关键词:正渗透 ; 阻垢剂 ; 汲取液 ; 循环冷却水
  • 英文关键词:forward osmosis;;scale inhibitors;;draw solution;;circulation cooling water
  • 中文刊名:MKXY
  • 英文刊名:Membrane Science and Technology
  • 机构:北京工业大学环境与能源工程学院绿色催化与分离北京市重点实验室;轻工业环境保护研究所;中国轻工业节能节水与废水资源化重点实验室;
  • 出版日期:2019-02-25
  • 出版单位:膜科学与技术
  • 年:2019
  • 期:v.39;No.194
  • 基金:北京市自然科学基金项目(8162017);; 国家重点研发计划“水资源高效开发利用”重点专项项目(2016YFC0400509)
  • 语种:中文;
  • 页:MKXY201901022
  • 页数:9
  • CN:01
  • ISSN:62-1049/TB
  • 分类号:105-113
摘要
正渗透(FO)是一种能耗低、膜污染轻的新型膜技术,但汲取液和膜材料性能、汲取液再生等问题限制了其应用.阻垢剂作为正渗透过程汲取液,渗透产水可直接用作循环冷却水,无需二次分离,从而大大降低能耗.本研究以NaCl为对照,重点考察了阻垢剂聚天冬氨酸钠(PASP)和二乙烯三胺五甲叉膦酸七钠(DTPMP-Na_7)作为正渗透汲取液的性能.结果表明,PASP和DTPMP-Na_7均能提供较大的渗透压,质量浓度相同时,渗透压大小顺序为:NaCl>DTPMP-Na_7>PASP.以纯水为原料液,采用三醋酸纤维素(CTA)膜按FO模式进行实验时,3种汲取液在其质量浓度相同时的水通量和反向渗透通量大小顺序均与渗透压顺序相同.当汲取液浓度为0.20 g/mL时,NaCl和DTPMP-Na_7的水通量分别为13.7和9.68 L/(m~2·h),后者达到前者的70.4%;但反向渗透通量分别为3.10和1.75 g/(m~2·h),后者低于前者,且DTPMP-Na_7的盐水比最低,仅为0.181 g/L.渗透压相同时,DTPMP-Na_7、PASP和NaCl的水通量相近,尤其在低渗透压范围内(<2 Osmol/kg),但DTPMP-Na_7反向渗透通量和盐水比总体情况最佳,尤其在高渗透压范围内(>2 Osmol/kg),甚至优于NaCl.这说明DTPMP-Na_7更加适宜构建汲取液不需再生的正渗透过程,以制备循环冷却水系统补充水.
        Forward osmosis(FO) is a new membrane technology with low energy consumption and light membrane fouling. However, the development and application of FO are limited by the performance of draw solution and membrane materials, and the regeneration of draw solution. Due to the use of the scale inhibitor as the draw solution in the forward osmosis process, the osmotic water can be used directly for circulating cooling water without secondary separation, greatly reducing energy consumption. In this study, the performance of polyaspartic acid sodium(PASP) and diethylene triamine penta(methylene phosphonic acid) hepta sodium(DTPMP-Na_7) as draw solution in forward osmosis were mainly investigated with NaCl as control. Results showed that both PASP and DTPMP-Na_7 could provide greater osmotic pressure. The osmotic pressure was in the order of NaCl>DTPMP-Na_7>PASP under the same mass concentration. When the feed solution was pure water and using cellulose triacetate membrane to carry out experiments in FO mode, the order of water flux and reverse solute flux was consistent with that of osmotic pressure at the same mass concentration. When the concentration of NaCl and DTPMP-Na_7 was 0.20 g/mL, the water flux respectively reached 13.7 L/(m~2·h) and 9.68 L/(m~2·h), the latter reached 70.4 % of the former; The reverse solute flux separately reached 3.10 g/(m~2·h) and 1.75 g/(m~2·h), the latter was lower than the former, and DTPMP-Na_7 showed the lowest solute/water ratio(0.181 g/L) in those three kind of draw solutions. Under the same osmotic pressure, the water flux was similar between DTPMP-Na_7, PASP and NaCl, especially in the low osmotic pressure range(<2 Osmol/kg). However, DTPMP-Na_7 showed the minimum reverse solute flux and solute/water ratio in the mass. It was better than NaCl, especially in the high osmotic pressure range(>2 Osmol/kg). It can be seen that DTPMP-Na_7 was more suitable for constructing a forward osmosis process without the regeneration of draw solution, which was used for preparing supplementary water for circulating cooling water system.
引文
[1] Chekli L, Phuntsho S, Kim J E, et al. A comprehensive review of hybrid forward osmosis systems: Perfor-mance, applications and future prospects[J]. J Membr Sci, 2016, 497:430-449.
    [2] McCutcheon J R, McGinnis R L, Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance[J]. J Membr Sci, 2006, 278(1):114-123.
    [3] Tan C H, Ng H Y. A novel hybrid forward osmosis-nanofiltration (FO - NF) process for seawater desalination: draw solution selection and system configuration[J]. Desalin Water Treat, 2010, 13(1/3):356-361.
    [4] Choi J S, Kim H, Lee S, et al. Theoretical investigation of hybrid desalination system combining reverse osmosis and forward osmosis[J]. Desalin Water Treat, 2010, 15(1/3):114-120.
    [5] Salih H H, Wang L, Patel V, et al. The utilization of forward osmosis for coal tailings dewatering[J]. Miner Eng, 2015, 81: 142-148.
    [6] 胡群辉, 邹昊, 姜莹,等. 正渗透膜分离关键技术及其应用进展[J]. 膜科学与技术, 2014, 34(5):109-115.
    [7] Coday B D, Almaraz N, Cath T Y. Forward osmosis desalination of oil and gas wastewater: Impacts of membrane selection and operating conditions on process performance[J]. J Membr Sci, 2015, 488:40-55.
    [8] 王珏, 黄满红, 张翠翠,等. 3 种正渗透膜对水中卡马西平的截留[J].环境工程学报, 2017, 11(1):197-204.
    [9] Zhang X W, Ning Z Y, Wang D K, et al. Processing municipal wastewaters by forward osmosis using CTA membrane[J]. J Membr Sci, 2014, 468:269-275.
    [10] Cath T Y, Gormly S, Beaudry E G, et al. Membrane contactor processes for wastewater reclamation in space I: direct osmotic concentration as pretreatment for reverse osmosis[J]. J Membr Sci, 2005, 257(1/2):85-98.
    [11] 范良千, 罗鸿兵, 陈凤辉. 正渗透技术在水处理和能源开发中的研究进展[J]. 膜科学与技术, 2014, 34(4):120-127.
    [12] 杨望臻, 顾正阳, 龚超, 等. 基于正渗透的水处理组合工艺应用研究进展[J]. 水处理技术, 2018, 44(2):1-5.
    [13] 刘帅, 谢朝新, 周宁玉,等. 葡萄糖、蔗糖、果糖作正渗透汲取液溶质的对比实验研究[J]. 水处理技术, 2015, 41(5):42-49.
    [14] Cai Y. A critical review on draw solutes development for forward osmosis[J]. Desalination, 2016, 391:16-29.
    [15] Yong J S, Phillip W A, Elimelech M. Coupled reverse draw solute permeation and water flux in forward os-mosis with neutral draw solutes[J]. J Membr Sci, 2012, 392:9-17.
    [16] Linares R V, Li Z, Sarp S, et al. Forward osmosis niches in seawater desalination and wastewater reuse[J]. Water Res, 2014, 66:122-139.
    [17] Lutchmiah K, Verliefde A R D, Roest K, et al. Forward osmosis for application in wastewater treatment: a review[J]. Water Res, 2014, 58:179-197.
    [18] Hoower L A, Phillip W A, Tiraferri A, et al. Forward with osmosis: emerging applications for greater sustainability[J]. Environ Sci Technol, 2011, 45:9824-9830.
    [19] Phuntshoa S, Shona H K, Hongb S, et al. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions[J]. J Membr Sci, 2011, 375:172-181.
    [20] Zhao P, Gao B Y, Xu S P, et al. Polyelectrolyte promoted forward osmosis process for dye wastewater treatment exploring the feasibility of using polyacrylamide as draw solute[J]. Chem Eng, 2015, 264:32-38.
    [21] Manjula P. Corrosion inhibition by sodium gluconate - Zn2+ - DTPMP system[J]. J Chem, 2009, 6(3):887-897.
    [22] 柳鑫华, 韩捷, 刘勇峰,等. 聚天冬氨酸阻垢与缓蚀的研究现状与展望[J]. 清洗世界, 2011, 27(5):19-28.
    [23] 杨士林, 黄君礼, 陶虎春,等. 马来酸酐合成聚天冬氨酸及其分子质量对阻垢性能的影响[J]. 现代化工, 2004, 23(12):26-29.
    [24] Zheng F C, Li C X, Yuan Q P, et al. Influence of molecular shape on the retention of small molecules by solvent resistant nanofiltration (SRNF) membranes: A suitable molecular size parameter[J]. J Membr Sci, 2008, 318:114-122.
    [25] 谢朋, 张忠国, 孙涛,等. 正渗透过程中汲取剂反向渗透研究进展[J]. 化工进展, 2015, 34(10):3540-3550.
    [26] Phillip W A, Yong J S, Elimelech M. Reverse draw solute permeation in forward osmosis: modeling and experiments[J]. Environ Sci Techno, 2010, 44(13):5170-5176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700