用户名: 密码: 验证码:
SnO_2-Fe_2O_3复合材料应用于碳纳米管集流体对锂离子电池性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of SnO_2-Fe_2O_3 composites on performance of carbon nanotubes current collectors for lithium-ion batteries
  • 作者:梁国东 ; 潘鹤政 ; 孙晓刚 ; 赖家美 ; 邱治文 ; 陈珑 ; 魏成成 ; 黄雅盼 ; 胡浩
  • 英文作者:LIANG Guodong;PAN Hezheng;SUN Xiaogang;LAI Jiamei;QIU Zhiwen;CHEN Long;WEI Chengcheng;HUANG Yapan;HU Hao;School of Mechantronics Engineering,Nanchang University;Nano Carbon Co.Ltd.;
  • 关键词:SnO2 ; Fe2O3 ; 碳纳米管 ; 锂离子电池 ; 比容量
  • 英文关键词:SnO2;;Fe2O3;;carbon nanotubes;;lithium-ion batteries;;specific capacity
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:南昌大学机电工程学院;江西克莱威纳米碳材料有限公司;
  • 出版日期:2018-09-29 16:19
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:江西省科技厅(20142BBE50071);; 江西省教育厅(KJLD13006)
  • 语种:中文;
  • 页:FUHE201907022
  • 页数:8
  • CN:07
  • ISSN:11-1801/TB
  • 分类号:185-192
摘要
水热合成法制备纳米SnO_2-Fe_2O_3复合材料,以SnO_2-Fe_2O_3为活性物质,多壁碳纳米管(MWCNTs)导电纸代替传统铜箔作为负极集流体制作锂离子电池。采用XRD、SEM进行表征,结果显示,SnO_2-Fe_2O_3均匀嵌入到MWCNTs构建的三维导电网络的空隙中。电化学测试结果表明,SnO_2-Fe_2O_3/MWCNTs导电纸作为负极电极能够显著提高锂离子电池的循坏和倍率性能。在100mA/g电流密度下循环30次,SnO_2-Fe_2O_3/MWCNTs导电纸电池比容量达到1 088mA·h/g,而在200mA/g电流密度下循环200次后,SnO_2-Fe_2O_3/MWCNTs导电纸比容量能稳定保持在898mA·h/g,表现出良好的循环性能,逐渐增大充放电电流,电池的比容量有所下降但其库伦效率仍然保持在96%以上,而在高倍率(1 600mA/g)下进行充放电时,SnO_2-Fe_2O_3/MWCNTs导电纸比容量仍然能够保持在547mA·h/g,之后再将电流密度降到100mA/g,比容量重新回到1 000 mA·h/g,SnO_2-Fe_2O_3/MWCNTs导电纸表现出十分优异的电化学性能。
        The nano-SnO_2-Fe_2O_3 composites were prepared by hydrothermal synthesis method and were used as the active material for lithium-ion batteries.The multi-walled carbon nanotubes(MWCNTs)conductive paper was used as the collector instead of traditional copper foil.The lithium-ion batteries were assembled with SnO_2-Fe_2O_3/MWCNTs conductive paper as anode and metal lithium foil as the counter electrodes.The structure and physical properties of electrodes were characterized by XRD and SEM.The results show that SnO_2-Fe_2O_3 is uniformly intercalated in the bores of the 3 Dconductive network constructed by MWCNTs.The results of electrochemical tests show that SnO_2-Fe_2O_3/MWCNTs conductive paper electrodes can improve the cycle and rate performance of lithium-ion batteries significantly.The specific capacity of SnO_2-Fe_2O_3/MWCNTs conductive paper electrode can reach 1088 mAh/g at the current density of 100 mA/g after 30 cycles.The specific capacity of SnO_2-Fe_2O_3/MWCNTs conductive paper can maintain at 898 mAh/g with 200 mA/g current density after cycling 200 cycles.The specific capacity of SnO_2-Fe_2O_3/MWCNTs conductive paper decreases with the increase of the current density,but the coulombic efficiency still remain above 96%.While the current increases to 1 600 mA/g,the capacity of SnO_2-Fe_2O_3/MWCNTs conductive paper still maintain at 547 mAh/g.The specific capacity of SnO_2-Fe_2O_3/MWCNTs conductive paper can recover to 1 000 mAh/g while the current reduces to 100 mA/g,and SnO_2-Fe_2O_3/MWCNTs conductive paper exhibit excellent rate performance.
引文
[1]DUNN B,KAMATH H,TARASCON J M.Electrical energy storage for the grid:A battery of choices[J].Science,2011,334(6058):928-935.
    [2]HAAG J M,PATTANAIK G,DURSTOCK M F.Nanostructured 3Delectrode architectures for high-rate Li-ion batteries[J].Advanced Materials,2013,25(23):3238-3243.
    [3]TARASCON J M,ARMAND M.Issues and challenges facing rechargeable lithium batteries[J].Nature,2001,414(6861):359-367.
    [4]GOODENOUGH J B,PARK K S.The Li-ion rechargeable battery:A perspective[J].Journal of the American Chemical Society,2013,135(4):1167-1176.
    [5]ARMAND M,TARASCON J M.Building better batteries[J].Nature,2008,451(7179):652-657.
    [6]DAHN J R,ZHENG T,LIU Y,et al.Mechanisms for lithium insertion in carbonaceous materials[J].Science,1995,270(5236):590-593.
    [7]IDOTA Y,KUBOTA T,MATSUFUJI A,et al.Tin-based amorphous oxide:A high-capacity lithium-ion-storage material[J].Science,1997,276(5317):1395-1397.
    [8]WINTER M,BESENHARD J O,SPAHR M E,et al.Insertion electrode materials for rechargeable lithium batteries[J].Advanced Materials,2010,10(10):725-763.
    [9]POIZOT P,LARUELLE S,GRUGEON S,et al.Nanosized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J].Nature,2000,407(6803):496-499.
    [10]ZHOU W W,CHENG C W,LIU J P,et al.Epitaxial growth of branchedα-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance[J].Advanced Functional Materials,2011,21(13):2439-2445.
    [11]RAHMAN M M,GLUSHENKOV A M,RAMIREDDY T,et al.Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure[J].Nanoscale,2013,5(11):4910-4916.
    [12]YU Y,CHEN C H,SHI Y.A tin-based amorphous oxide composite with a porous,spherical,multideck-cage morphology as a highly reversible anode material for lithium-ion batteries[J].Advanced Materials,2007,19(7):993-997.
    [13]CHEN C H,KELDER E M,SCHOONMAN J.Functional ceramic films with reticular structures prepared by electrostatic spray deposition technique[J].Journal of the Electrochemical Society,1997,144(11):289-294.
    [14]WANG Y,CAO G.Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J].Advanced Materials,2010,20(12):2251-2269.
    [15]SONG M K,PARK S,ALAMGIR F M,et al.Nanostructured electrodes for lithium-ion and lithium-air batteries:The latest developments,challenges,and perspectives[J].Materials Science&Engineering R,2011,72(11):203-252.
    [16]PITCHAI R,THAVASI V,MHAISALKAR S G,et al.Nanostructured cathode materials:A key for better performance in Li-ion batteries[J].Journal of Materials Chemistry,2011,21(30):11040-11051.
    [17]JIANG J,LI Y,LIU J,et al.Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes[J].Nanoscale,2011,3(1):45-58.
    [18]JIANG Y,ZHANG D,LI Y,et al.Amorphous Fe2O3,as a high-capacity,high-rate and long-life anode material for lithium ion batteries[J].Nano Energy,2014,4(2):23-30.
    [19]JIANG Y,LI Y,YAN M,et al.Abnormal behaviors in electrical transport properties of cobalt-doped tin oxide thin films[J].Journal of Materials Chemistry,2012,22(31):16060-16065.
    [20]HUANG J Y,ZHONG L,WANG C M,et al.In situ observation of the electrochemical lithiation of a single SnO2nanowire electrode[J].Cheminform,2011,42(10):1515-1520.
    [21]WANG C M,XU W,LIU J,et al.In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation[J].Nano Letters,2011,11(5):1874-1880.
    [22]刘斌,宋彬,胡文胜,等.纳米Fe2O3-CuO复合氧化物的制备与电化学性能[J].复合材料学报,2011,28(2):191-195.LIU B,SONG B,HU W S,et al.Preparation and electrochemical properties of nano Fe2O3-CuO composite oxides[J].Acta Materiae Compositae Sinica,2011,28(2):191-195(in Chinese).
    [23]刘珍红,孙晓刚,邱治文,等.多壁碳纳米管纸作正极集流体的锂硫电池性能[J].复合材料学报,2017,34(4):873-880.LIU Z H,SUN X G,QIU Z W,et al.Performance of lithium sulfur batteries using multiwalled carbon nanotube paper as cathode current collector[J].Acta Materiae Compositae Sinica,2017,34(4):873-880(in Chinese).
    [24]XING L L,CUI C X,DENG P,et al.Template-free assembly ofα-FeO-SnO core-shell nanorod arrays on titanium foil and their excellent lithium storage performance[J].RSC Advances,2013,3(26):10379-10384.
    [25]MIAO C,LIU M,HE Y B,et al.Monodispersed SnO2,nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries[J].Energy Storage Materials,2016,3:98-105.
    [26]WU W,ZHAO Y,LI J,et al.A ternary phased SnO2-Fe2O3/SWCNTs nanocomposite as a high performance anode material for lithium ion batteries[J].Journal of Energy Chemistry,2014,23(3):376-382.
    [27]YUAN T,JIANG Y,LI Y,et al.Enhanced lithium storage performance in three-dimensional porous SnO2-Fe2O3,composite anode films[J].Electrochimica Acta,2014,136(8):27-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700