用户名: 密码: 验证码:
氯离子及迷流共同作用下持荷盾构管片钢筋锈层形态
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:STEEL RUST LAYER FORM OF SUSTAINED LOAD SEGMENTS UNDER COMBINED ACTION OF CHLORIDE ION AND STRAY CURRENT
  • 作者:余朔 ; 金浩 ; 周顺华 ; 毕湘利
  • 英文作者:YU Shuo;JIN Hao;ZHOU Shun-hua;BI Xiang-li;Key Laboratory of Road and Traffic Engineering of Ministry of Education,Tongji University;Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety;The Technical Center of Shanghai Shentong Metro Group Co.,Ltd.;
  • 关键词:盾构管片 ; 钢筋锈蚀 ; 杂散电流 ; 氯离子 ; 外部荷载
  • 英文关键词:shield segment;;steel corrosion;;stray current;;chloride ion;;external load
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:同济大学道路与交通工程教育部重点实验室;上海市轨道交通结构耐久与系统安全重点实验室;上海申通地铁集团有限公司技术中心;
  • 出版日期:2019-07-11
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:国家重点研发计划项目(2017YFB1201204);; 国家自然科学基金项目(51478353,41472247)
  • 语种:中文;
  • 页:GCLX201907021
  • 页数:10
  • CN:07
  • ISSN:11-2595/O3
  • 分类号:184-193
摘要
针对盾构隧道结构在服役期间可能出现钢筋锈蚀的问题,考虑杂散电流、氯离子及外部荷载共同作用,建立了电-化-力三场耦合的三维管片数值模型,分析了多因素作用下拱腰部位管片钢筋的锈蚀率变化规律及锈层分布形态。研究表明:1)靠近管片外侧钢筋的锈蚀率比内侧的大,不同区域的钢筋出现最大锈蚀率的位置与连心线的夹角在0°~52°之间。2)在荷载作用下管片钢筋的锈蚀率与体积应变有关,管片中部的锈蚀率大于两端的锈蚀率。3)在钢筋脱钝情况下,管片钢筋的锈蚀率随阴阳极电势差增大呈线性增加,随氯离子含量增大呈对数增加。4)在三种因素共同作用下管片钢筋的锈层分布呈偏心圆形态,且偏心圆圆心坐标及半径的大小与钢筋不均匀锈蚀系数及最大腐蚀电流密度有关。
        Under the influence of stray current as well as chloride ion and external load, the shield tunnel steel easily appear corrosion during its service period. Therefore, a three-dimensional numerical model is established in an electrical as well as chemical and mechanical coupling field. The change rule of segment steel corrosion rate at arch and the steel rust layer distribution form are analyzed. The results show that: 1) the steel corrosion rate near the segment outside is larger than that near the inside, the intersection angle between the direction of maximum steel corrosion rate and the circle center line is 0°~52°; 2) the segment steel corrosion rate is related to volumetric strain under loading, and the segment steel corrosion rate in the middle is larger than that in the two ends; 3) when the steel occur depassivation, the steel corrosion rate increases linearly with the potential difference of cathode to anode, and it increases logarithmically with the chloride ion content; 4) under the joint action of three factors, the segment steel rust layer form appear eccentric circle, and the radius size and circular center are related to the non-uniform corrosion coefficient as well as the maximum corrosion current density.
引文
[1]O?bolt J,Or?ani?F,Balabani?G,et al.Modeling damage in concrete caused by corrosion of reinforcement:coupled 3D FE model[J].International Journal of Fracture,2012,178(1):233-244.
    [2]马亚飞,王磊,张建仁.锈胀钢筋混凝土拱肋承载力试验与模拟[J].工程力学,2017,34(3):155-161.Ma Yafei,Wang Lei,Zhang Jianren.Experimental and numerical studies on reinforced concrete arch ribs with corrosion-induced cracks[J].Engineering Mechanics,2017,34(3):155-161.(in Chinese)
    [3]何川,封坤,方勇.盾构法修建地铁隧道的技术现状与展望[J].西南交通大学学报,2015,50(1):97-109.He Chuan,Feng Kun,Fang Yong.Review and prospects on constructing technologies of metro tunnels using shield tunnelling method[J].Journal of Southwest Jiaotong University,2015,50(1):97-109.(in Chinese)
    [4]Bertolini L,Carsana M,Pedeferri P.Corrosion behaviour of steel in concrete in the presence of stray current[J].Corrosion Science,2007,49(3):1056-1068.
    [5]Lei M,Peng L,Shi C.An experimental study on durability of shield segments under load and chloride environment coupling effect[J].Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2014,42(5):15-24.
    [6]Li Q,Yu H,Ma H,et al.Test on durability of shield tunnel concrete segment under coupling multi-factors[J].Open Civil Engineering Journal,2014,8(1):451-457.
    [7]刘四进,何川,孙齐,等.腐蚀离子环境中盾构隧道衬砌结构侵蚀劣化机理[J].中国公路学报,2017,30(8):125-133.Liu Sijin,He Chuan,Shun Qi,et al.Erosion degradation mechanism of shield tunnel lining structure in corrosive ion environment[J].China Journal of Highway and Transport,2017,30(8):125-133.(in Chinese)
    [8]Hong Y,Li Z,Qiao G,et al.Numerical simulation and experimental investigation of the stray current corrosion of viaducts in the high-speed rail transit system[J].International Review of Economics&Finance,2017,33(3):319-337.
    [9]O?bolt J,Balabani?G,Ku?ter M.3D numerical modelling of steel corrosion in concrete structures[J].Corrosion Science,2011,53(12):4166-4177.
    [10]Cao C.3D simulation of localized steel corrosion in chloride contaminated reinforced concrete[J].Construction&Building Materials,2014,72(12):434-443.
    [11]Zhu X,Zi G.A 2D mechano-chemical model for the simulation of reinforcement corrosion and concrete damage[J].Construction&Building Materials,2017,137:330-344.
    [12]O.Burkan Isgor,A.Ghani Razaqpur.Modelling steel corrosion in concrete structures[J].Materials and Structures,2006,39(3):291-302.
    [13]Greenwood D J,Goodman D.Direct measurements of the distribution of distribution of oxygen in soil aggregates and in columns of fine soil crumbs[J].European Journal of Soil Science,2010,18(1):182-196.
    [14]Hussain R R.Enhanced classical Tafel diagram model for corrosion of steel in chloride contaminated concrete and the experimental non-linear effect of temperature[J].International Journal of Concrete Structures&Materials,2010,4(2):71-75.
    [15]Cao C,Cheung M M S.Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures[J].Construction&Building Materials,2014,51(1):75-81.
    [16]Muehlenkamp E B,M.D.Koretsky,Westall J C.Effect of moisture on the spatial uniformity of cathodic protection of steel in reinforced concrete[J].Corrosion the Journal of Science&Engineering,2005,61(6):519-533.
    [17]金浏,张仁波,杜修力.低应力水平下混凝土中氯离子扩散行为多尺度分析方法[J].工程力学,2017,34(3):84-92.Jin Liu,Zhang Renbo,Du Xiuli.Multiscale analysis for the chloridoid diffusivity in concrete subjected to low-level stress[J].Engineering Mechanics,2017,34(3):84-92.(in Chinese)
    [18]Du X L,Jin L,Zhang R B.Chloride diffusivity in saturated cement paste subjected to external mechanical loadings[J].Ocean Engineering,2015,95(2):1-10.
    [19]Papadakis V G.Fundamental modeling and experimental investigation of concrete carbonation[J].Aci Material Journal,1991,88(4):363-373.
    [20]Hansen T C.Physical structure of hardened cement paste.A classical approach[J].Materials&Structures,1986,19(6):423-436.
    [21]Suda K,Misra S,Motohashi K.Corrosion products of reinforcing bars embedded in concrete[J].Corrosion Science,1993,35(5/6/7/8):1543-1549.
    [22]Bhargava K,Ghosh A K,Mori Y,et al.Model for cover cracking due to rebar corrosion in RC structures[J].Engineering Structures,2006,28(8):1093-1109.
    [23]Zhao Y,Hu B,Yu J,et al.Non-uniform distribution of rust layer around steel bar in concrete[J].Corrosion Science,2011,53(12):4300-4308.
    [24]Thybo A E A,Michel A,Stang H.Smeared crack modelling approach for corrosion-induced concrete damage[J].Materials&Structures,2018,50(2):1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700