用户名: 密码: 验证码:
荒漠杜加依林冠层水热变化及CO_2交换特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon interfacial hydrothermal variation and CO_2 exchange characteristics of the Tugai forest in a desert environment
  • 作者:何学敏 ; 吕光辉 ; 秦璐 ; 李岩 ; 杨晓东 ; 杨建军 ; 于恩涛
  • 英文作者:HE Xuemin;L Guanghui;QIN Lu;LI Yan;YANG Xiaodong;YANG Jianjun;YU Entao;Institute of Arid Ecology,Xinjiang University;Post-Doctoral Research Center for Ecology,Xinjiang University;Xinjiang Key Laboratory of Oasis Ecology;Xinjiang Academy of Environment Protection Science;Xinjiang Key Laboratory of Environmental Pollution Monitoring and Risk Warning;College of Resources and Environment Science,Xinjiang University;Institute of Atmospheric Physics,Chinese Academy of Sciences;
  • 关键词:杜加依林 ; 垂直变幅 ; 水热变化 ; 冠层 ; 涡度相关
  • 英文关键词:Tugai forest;;vertical amplitude;;hydrothermal variation;;canopy;;eddy covariance
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:新疆大学干旱生态环境研究所;新疆大学生态学博士后科研流动站;新疆绿洲生态教育部重点实验室;新疆环境保护科学研究院;新疆环境污染监控与风险预警重点实验室;新疆大学资源与环境科学学院;中国科学院大气物理研究所;
  • 出版日期:2018-11-05 09:04
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:新疆维吾尔自治区重点实验室开放课题(2015KL004);; 国家自然科学基金(31760168);; 新疆大学博士科研启动基金(BS150258)
  • 语种:中文;
  • 页:STXB201903029
  • 页数:11
  • CN:03
  • ISSN:11-2031/Q
  • 分类号:299-309
摘要
选取新疆艾比湖湿地国家级自然保护区荒漠杜加依林为研究对象,利用通量塔连续观测数据分析新疆艾比湖流域内杜加依林冠层界面水热垂直变化和CO_2交换特征,进一步比较了冠层界面湍流碳通量、植物冠层储存碳通量及净碳交换量,探讨了不同时间和垂直空间序列下杜加依林冠层界面温湿廓线与CO_2交换过程的相互关系。结果表明,新疆艾比湖流域内杜加依林冠层上方大气稳定度生长季的6—9月为中性(z/L=0.009),非生长季为不稳定(z/L=-0.449),全年总体呈不稳定水平(z/L=-0.194);冠层界面上气温垂直变幅小于5℃,随高度呈递增趋势,湿度垂直变幅超过40%;地-气碳通量呈秋冬小春夏大规律,年碳收支高于干旱区平均水平,为-0.026 mg CO_2m~(-2)s~(-1),表现为碳汇;垂直空间尺度上垂直温湿度差与生态系统净碳交换量(NEE,Net Ecosystem Exchange)拟合较好,温度拟合结果为R~2=0.7350(P﹤0.01),湿度拟合结果为R~2=0.3627(P﹤0.01),水热变点分别为5%和1℃,而季节尺度上温度拟合结果较好,温度拟合结果为R~2=0. 5221(P﹤0. 01),湿度拟合结果为R~2=0.1716(P﹤0.01),变点为55%和18℃。生长季较小的冠层垂直温差有利于杜加依林对大气CO_2的吸收,而冠层高湿环境则会抑制杜加依林对CO_2的吸收。
        In the present study,the Tugai forest in the Ebinur Lake Wetland National Nature Reserve in Xinjiang,Northwest China was analyzed. Canopy interfacial hydrothermal vertical variation and CO_2 exchange characteristics of the Tugai forest were analyzed using continuous data observed from a 30 m high flux tower in the study area,and the turbulent carbon flux at the canopy interface,plant canopy carbon flux,and net carbon exchange at the canopy interface were also compared. In addition,the relationship between the temperature and humidity profiles at the canopy interface and CO_2 exchange process under different temporal and vertical spatial sequences were determined. The results showed that the atmospheric stability over the canopy layer during the growing season( from June to September) was neutral( z/L =0.009),but unstable during the non-growing season( z/L =-0.449),and also unstable( z/L =-0.194) almost throughout the year. The vertical amplitude of the air temperature at the canopy interface was < 5℃,and air temperature increased with increasing canopy height; the vertical amplitude of humidity was > 40%. The land-atmosphere carbon flux was low in autumn and winter and high in spring and summer. The annual carbon budget was-0. 026 mg CO_2 m~(-2)s~(-1),which was higher than the average level of arid areas,and appeared to be a carbon sink. The vertical temperature and humidity differences on the vertical spatial scale fitted well to the net ecosystem carbon exchange capacity( NEE),with an R~2 fitting coefficient of 0.7350( P ﹤ 0.01) for temperature,and 0.3627( P ﹤ 0.01) for humidity,and the hydrothermal inflection points were 5% and 1℃,respectively. However,the temperature fitting result was better seasonally,where R~2 was 0.5221( P ﹤ 0.01) for temperature and 0.1716( P ﹤ 0.01) for humidity,and the hydrothermal inflection points were 55% and18℃,respectively. The smaller vertical temperature gradients in the canopy during the growing season would be beneficial to atmospheric CO_2 absorption,whereas the high humidity environment of the canopy could inhibit the atmospheric CO_2 uptake by the Tugai forest.
引文
[1]Pan Y D,Birdsey R A,Fang J Y,Houghton R,Kauppi P E,Kurz W A,Phillips O L,Shvidenko A,Lewis S L,Canadell J G,Ciais P,Jackson R B,Pacala S W,Mc Guire A D,Piao S L,Rautiainen A,Sitch S,Hayes D.A large and persistent carbon sink in the world's forests.Science,2011,333(6045):988-993.
    [2]李德志,臧润国.森林冠层结构与功能及其时空变化研究进展.世界林业研究,2004,17(3):12-16.
    [3]Keenan T,García R,Friend A D,Zaehle S,Gracia C,Sabate S.Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2and water fluxes through combined in situ measurements and ecosystem modelling.Biogeosciences,2009,6(8):1423-1444.
    [4]杨亚丽.森林冠层气象要素廓线模型构建及应用研究[D].沈阳:沈阳农业大学,2016.
    [5]Leuzinger S,K9rner C.Tree species diversity affects canopy leaf temperatures in a mature temperate forest.Agricultural and Forest Meteorology,2007,146(1/2):29-37.
    [6]任引,薛建辉.中亚热带甜槠常绿阔叶林小气候特征分析.南京林业大学学报:自然科学版,2008,32(3):14-18.
    [7]马鸿儒,吉春容,李新建,邹陈,袁玉江.天山中部白杨沟天然林区森林小气候观测与分析.干旱区研究,2011,28(2):251-254.
    [8]何清,缪启龙,张瑞军,艾力·买买提明,刘新春,霍文.塔克拉玛干沙漠肖塘地区空气动力学粗糙度分析.中国沙漠,2008,28(6):1011-1016.
    [9]吕萍,董治宝,张正偲,赵爱国.腾格里沙漠近地面层风、气温、湿度特征.中国沙漠,2009,29(5):977-981.
    [10]刘冉,王勤学,唐立松,李彦.盐生荒漠地表水热与二氧化碳通量的季节变化及驱动因素.生态学报,2009,29(1):67-75.
    [11]Koerner B A,Klopatek J M.Carbon fluxes and nitrogen availability along an urban-rural gradient in a desert landscape.Urban Ecosystems,2010,13(1):1-21.
    [12]Slot M,Garcia M N,Winter K.Temperature response of CO2exchange in three tropical tree species.Functional Plant Biology,2016,43(5):468-478.
    [13]龚雪伟,吕光辉.艾比湖流域杜加依林荒漠植物群落多样性及优势种生态位.生物多样性,2017,25(1):34-45.
    [14]Thevs N.Ecology,Spatial Distribution,and Utilization of the Tugai Vegetation at the Middle Reaches of the Tarim River,Xinjiang,China.Greifswald,Germany:Ernst-Moritz-Arndt-University Greifswald,2006.
    [15]Zerbe S,Halik U,Küchler J.Urban greening in the oases of continental arid Southern Xinjiang(NW China)-an interdisciplinary approach.Die Erde,2005,136(3):245-266.
    [16]Thevs N,Zerbe S,Schnittler M,Abdusalih N,Succow M.Structure,reproduction and flood-induced dynamics of riparian Tugai forests at the Tarim River in Xinjiang,NW China.Forestry,2008,81(1):45-57.
    [17]Leemans R,Eickhout B.Another reason for concern:regional and global impacts on ecosystems for different levels of climate change.Global Environmental Change,2004,14(3):219-228.
    [18]陈亚宁,李稚,范煜婷,王怀军,方功焕.西北干旱区气候变化对水文水资源影响研究进展.地理学报,2014,69(9):1295-1304.
    [19]于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征.北京:科学出版社,2008:135-161.
    [20]Falge E,Baldocchi D,Olson R,Anthoni P,Aubinet M,Bernhofer C,Burba G,Ceulemans R,Clement R,Dolman H,Granier A,Gross P,Grünwald T,Hollinger D,Jensen N O,Katul G,Keronen P,Kowalski A,Lai C T,Law B E,Meyers T,Moncrieff J,Moors E,Munger J W,Pilegaard K,Rannik,Rebmann C,Suyker A,Tenhunen J,Tu K,Verma S,Vesala T,Wilson K,Wofsy S.Gap filling strategies for defensible annual sums of net ecosystem exchange.Agricultural and Forest Meteorology,2001,107(1):43-69.
    [21]黄昆,王绍强,王辉民,仪垂祥,周蕾,刘允芬,石浩.中亚热带人工针叶林生态系统碳通量拆分差异分析.生态学报,2013,33(17):5252-5265.
    [22]Hollinger D Y,Kelliher F M,Byers J N,Hunt J E,Mc Seveny T M,Weir P L.Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere.Ecology,1994,75(1):134-150.
    [23]Griffis T J,Black T A,Morgenstern K,Barr A G,Nesic Z,Drewitt G B,Gaumont-Guay D,Mc Caughey J H.Ecophysiological controls on the carbon balances of three southern boreal forests.Agricultural and Forest Meteorology,2003,117(1/2):53-71.
    [24]杨振,张一平,于贵瑞,宋清海,高举明,孙晓敏,窦军霞,赵双菊,谭正洪.西双版纳热带季节雨林大气稳定度特征.生态学杂志,2008,27(1):130-134.
    [25]于跃飞.新疆局地气候研究[D].杭州:浙江大学,2006.
    [26]王超,韦志刚,高晓清,李振朝,侯旭宏,刘慧,魏红.夏季敦煌稀疏植被下垫面物质和能量交换的观测研究.高原气象,2012,31(3):622-628.
    [27]Holst J,Liu C,Yao Z,Brüggemann,N,Zheng X,Giese M,Butterbach-Bahl K.Fluxes of nitrous oxide,methane and carbon dioxide during freezing-thawing cycles in an Inner Mongolian steppe.Plant and Soil,2008,308(1/2):105-117.
    [28]秦璐,吕光辉,何学敏,张雪妮,张雪梅,孙景鑫,李尝君,杨晓东.艾比湖地区土壤呼吸对季节性冻土厚度变化的响应.生态学报,2013,33(22):7259-7269.
    [29]王国印.半干旱区陆气相互作用的观测与研究[D].兰州:兰州大学,2013.
    [30]Zhang G,Leclerc M Y,Karipot A.Local flux-profile relationships of wind speed and temperature in a canopy layer in atmospheric stable conditions.Biogeosciences,2010,7(11):3625-3636.
    [31]Walter B,Gromke C,Leonard K C,Manes C,Lehning M.Spatio-temporal surface shear-stress variability in live plant canopies and cube arrays.Boundary-Layer Meteorology,2012,143(2):337-356.
    [32]张强,曾剑,姚桐.植被下垫面近地层大气动力状态与动力学粗糙度长度的相互作用及其参数化关系.科学通报,2012,57(8):647-655.
    [33]Hirai T L,Carmona-Galindo V D,Samuelson S,Hale C,Braker E.Sub-Canopy temperature dynamics of a native tree plantation from a lowland tropical rainforest in Costa Rica.Open Journal of Forestry,2014,4(3):191-196.
    [34]Tesfuhuney W A,Walker S,van Rensburg L D,Everson C S.Water vapor,temperature and wind profiles within maize canopy under in-field rainwater harvesting with wide and narrow runoff strips.Atmosphere,2013,4(4):428-444.
    [35]洪雯,王毅勇,聂晓.湿地下垫面大气边界层温、湿廓线的数值模拟及影响因素分析.气候与环境研究,2011,16(4):494-504.
    [36]涂钢,刘辉志,董文杰.半干旱区不同下垫面近地层湍流通量特征分析.大气科学,2009,33(4):719-725.
    [37]Matsuura S,Miyata A,Mano M,Hojito M,Mori A,Kano S,Sasaki H,Kohyama K,Hatano R.Seasonal carbon dynamics and the effects of manure application on carbon budget of a managed grassland in a temperate,humid region in Japan.Grassland Science,2014,60(2):76-91.
    [38]宋霞,刘允芬,徐小锋,于贵瑞,温学发.红壤丘陵区人工林冬春时段碳、水、热通量的观测与分析.资源科学,2004,26(3):96-104.
    [39]Zhou X P,Wang X K,Tong L,Zhang H X,Lu F,Zheng F X,Hou P Q,Song W Z,Ouyang Z Y.Soil warming effect on net ecosystem exchange of carbon dioxide during the transition from winter carbon source to spring carbon sink in a temperate urban lawn.Journal of Environmental Sciences,2012,24(12):2104-2112.
    [40]麦博儒,安兴琴,邓雪娇,周凌晞,王春林,李菲,黄建平,陈玲,尹淑娴.珠江三角洲近地层CO2通量模拟分析与评估验证.中国环境科学,2014,34(8):1960-1971.
    [41]Jasoni R L,Smith S D,Arnone J A.Net ecosystem CO2exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2.Global Change Biology,2005,11(5):749-756.
    [42]Wohlfahrt G,Fenstermaker L F,Arnone III J A.Large annual net ecosystem CO2uptake of a Mojave Desert ecosystem.Global Change Biology,2008,14(7):1475-1487.
    [43]Vourlitis G L,de Souza Nogueira J,Filho N P,Hoeger W,Raiter F,Biudes M S,Arruda J C,Capistrano V B,de Faria J L B,de Almeida Lobo F.The sensitivity of diel CO2and H2O vapor exchange of a tropical transitional forest to seasonal variation in meteorology and water availability.Earth Interactions,2005,9(27):1-23.
    [44]Gao Y H,Li X R,Liu L C,Jia R L,Yang H T,Li G,Wei Y P.Seasonal variation of carbon exchange from a revegetation area in a Chinese desert.Agricultural and Forest Meteorology,2012,156:134-142.
    [45]李婧,刘树华,茅宇豪,张称意,刘立超,梁福明,辛国君,王建华.不同生态系统CO2通量和浓度特征分析研究.地球物理学报,2006,49(5):1298-1307.
    [46]唐祥,陈文婧,李春义,查天山,吴斌,王小平,贾昕.北京八达岭林场人工林净碳交换及其环境影响因子.应用生态学报,2013,24(11):3057-3064.
    [47]张法伟,李英年,曹广民,李凤霞,叶广继,刘吉宏,魏永林,赵新全.青海湖北岸高寒草甸草原生态系统CO2通量特征及其驱动因子.植物生态学报,2012,36(3):187-198.
    [48]Ogle K,Reynolds J F.Desert dogma revisited:coupling of stomatal conductance and photosynthesis in the desert shrub,Larrea tridentata.Plant,Cell&Environment,2002,25(7):909-921.
    [49]苏培玺,严巧娣.C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征.生态学报,2006,26(1):75-82.
    [50]秦璐.不同盐生境下盐穗木群落凝结水形成机制及其生态效应[D].乌鲁木齐:新疆大学,2014.
    [51]苗雨春.大兴安岭多年冻土区泥炭沼泽地---气间净碳通量交换[D].北京:中国科学院大学,2013.
    [52]Bauerle W L,Daniels A B,Barnard D M.Carbon and water flux responses to physiology by environment interactions:a sensitivity analysis of variation in climate on photosynthetic and stomatal parameters.Climate Dynamics,2014,42(9/10):2539-2554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700